Combination therapy with purine nucleoside analogs.

Oncology (Williston Park)

Department of Hematology/Oncology, Tufts New England Medical Center, Boston, Massachusetts, USA.

Published: June 2000

Pentostatin (Nipent) has demonstrated significant activity as a single agent in patients with low-grade B- and T-cell lymphomas, but thus far, clinical experience with combinations of pentostatin and other agents is limited. A study of alternating administration of pentostatin and high-dose interferon-alfa-2a (Roferon A) in cutaneous T-cell lymphoma patients has been undertaken and has demonstrated a 41% response rate, with tolerable toxicity. Studies combining pentostatin with alkylating agents, including chlorambucil (Leukeran) and cyclophosphamide (Cytoxan, Neosar) in patients with chronic lymphocytic leukemia (CLL) have reported significant immunosuppression and have required dose modifications of one or both agents. Recently, a clinical trial was initiated to evaluate the combination of pentostatin and cordycepin, a novel purine analog, in patients with terminal deoxynucleotidyl transferase-positive acute lymphocytic leukemia, based on in vitro data demonstrating the significant synergy of this combination.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lymphocytic leukemia
8
pentostatin
5
combination therapy
4
therapy purine
4
purine nucleoside
4
nucleoside analogs
4
analogs pentostatin
4
pentostatin nipent
4
nipent demonstrated
4
demonstrated activity
4

Similar Publications

Chronic lymphocytic leukemia (CLL) treatment has undergone a significant evolution with a shift from historical chemotherapeutic regimens to targeted therapies such as Bruton tyrosine kinase (BTK) and BCL-2 inhibitors. These advancements have been associated with a notable improvement in survival rates with a transformation of CLL into a chronic and manageable condition for most persons with this disease. However, as a consequence of improved outcomes, long-term CLL survivors now face emergent challenges which include a risk of infections, cardiovascular complications, and secondary malignancies.

View Article and Find Full Text PDF

Richter transformation (RT) is a rare albeit devastating complication of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL). RT is defined as an aggressive lymphoma, typically diffuse large B-cell lymphoma, in the setting of CLL. A clonal relationship to the preceding CLL clone is detected in the majority of RT cases and confers more aggressive clinicopathologic kinetics, resistance to standard chemoimmunotherapy regimens, and inferior survival.

View Article and Find Full Text PDF

Tumor Cell Survival Factors and Angiogenesis in Chronic Lymphocytic Leukemia: How Hot Is the Link?

Cancers (Basel)

December 2024

Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France.

Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic CD5/CD19 B lymphocytes in the blood. These cells migrate to and proliferate in the bone marrow and lymphoid tissues. Despite the development of new therapies for CLL, drug resistance and disease relapse still occur; novel treatment approaches are therefore still needed.

View Article and Find Full Text PDF

Recent studies have demonstrated the association between constitutional ring chromosome 21 (r(21)c) and the development of B-cell acute lymphoblastic leukemia (B-ALL) with intrachromosomal amplification of chromosome 21 (iAMP21). iAMP21 acts as a driver which is often accompanied by secondary alterations that influence disease progression. Here, we report an atypical case of iAMP21 B-ALL with a unique molecular profile in the context of r(21)c.

View Article and Find Full Text PDF

Genetic studies of haematological cancers have pointed out the heterogeneity of leukaemia in its different subpopulations, with distinct mutations and characteristics, impacting the treatment response. Next-generation sequencing (NGS) and genome-wide analyses, as well as single-cell technologies, have offered unprecedented insights into the clonal heterogeneity within the same tumour. A key component of this heterogeneity that remains unexplored is the intracellular metabolome, a dynamic network that determines cell functions, signalling, epigenome regulation, immunity and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!