Mutational analysis of the N-methyltransferase domain of the multifunctional enzyme enniatin synthetase.

J Biol Chem

Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Fachgebiet Biochemie und Molekulare Biologie, Technische Universität Berlin, Franklinstrasse 29, D-10587 Berlin, Germany.

Published: October 2000

N-Methylcyclopeptides like cyclosporins and enniatins are synthesized by multifunctional enzymes representing hybrid systems of peptide synthetases and S-adenosyl-l-methionine (AdoMet)-dependent N-methyltransferases. The latter constitute a new family of N-methyltransferases sharing high homology within procaryotes and eucaryotes. Here we describe the mutational analysis of the N-methyltransferase domain of enniatin synthetase from Fusarium scirpi to gain insight into the assembly of the AdoMet-binding site. The role of four conserved motifs (I, (2085)VLEIGTGSGMIL; II/Y, (2105)SYVGLDPS; IV, (2152)DLVVFNSVVQYFTPPEYL; and V, (2194)ATNGHFLAARA) in cofactor binding as measured by photolabeling was studied. Deletion of the first 21 N-terminal amino acid residues of the N-methyltransferase domain did not affect AdoMet binding. Further shortening close to motif I resulted in loss of binding activity. Truncation of 38 amino acids from the C terminus and also internal deletions containing motif V led to complete loss of AdoMet-binding activity. Point mutations converting the conserved Tyr(223) (corresponding to position 2106 in enniatin synthetase) in motif II/Y (close to motif I) into Val, Ala, and Ser, respectively, strongly diminished AdoMet binding, whereas conversion of this residue to Phe restored AdoMet-binding activity to approximately 70%, indicating that Tyr(223) is important for AdoMet binding and that the aromatic Tyr(223) may be crucial for AdoMet binding in N-methylpeptide synthetases.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M002614200DOI Listing

Publication Analysis

Top Keywords

adomet binding
16
n-methyltransferase domain
12
enniatin synthetase
12
mutational analysis
8
analysis n-methyltransferase
8
close motif
8
adomet-binding activity
8
binding
6
domain multifunctional
4
multifunctional enzyme
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!