We have previously described two cytotoxic T lymphocyte clones isolated from lymphocytes infiltrating a human major histocompatibility complex class II-/class I+, CD4+ cutaneous T cell lymphoma. These clones displayed a CD4+CD8dim+ (TC5) and CD4+ CD8- (TC7) phenotype and mediated a specific major histocompatibility complex class I-restricted cytotoxic activity toward Cou-LB autologous tumor cell line. Our studies were performed to elucidate the mechanism involved in T-cell-clone-mediated cytotoxicity and to determine the cytokine profile of both the lymphoma cell line and specific cytotoxic T lymphocyte clones. The results indicate that, despite surface expression of Fas receptor on Cou-LB and Fas ligand induction on TC5 and TC7 cell membranes, the CD4+ cytotoxic T lymphocyte clones do not use this cytotoxic mechanism to lyse their specific target. The TC7 clone uses instead a granzyme-perforin-dependent pathway. Furthermore, quantitative analysis of Th1 and Th2 cytokine mRNA expression in the cutaneous T cell lymphoma cell line as well as in TC5 and TC7 clones indicated that, whereas the tumor cells display a Th2-type profile (interleukin-4, interleukin-6, and interleukin-10), the cytotoxic T lymphocyte clones express Th1-type cytokines (interferon-gamma, granulocyte macrophage colony stimulating factor, and interleukin-2). In addition, preincubation of the tumor-infiltrating lymphocyte clones with autologous tumor cells induced their activation and subsequent amplification of the Th1-type response. These results indicate a direct contribution of the malignant cells in the Th1/Th2 imbalance observed frequently in cutaneous T cell lymphoma patients and suggest their potential role in depressed cell-mediated immunity. Identification of CD4+ Th1-type cytotoxic T lymphocyte clones, the tumor antigen they recognize, and optimization of their cytokine expression profile should be useful for the design of new immunotherapy protocols in cutaneous T cell lymphoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1523-1747.2000.00995.x | DOI Listing |
J Immunother Cancer
January 2025
Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
Background: B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy.
Methods: Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining.
Elife
December 2024
Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.
Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors.
View Article and Find Full Text PDFPLoS One
January 2025
Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia.
Hepatitis C Virus (HCV) is a blood borne pathogen that affects around 200 million individuals worldwide. Immunizations against the Hepatitis C Virus are intended to enhance T-cell responses and have been identified as a crucial component of successful antiviral therapy. Nevertheless, attempts to mediate clinically relevant anti-HCV activity in people have mainly failed, despite the vaccines present satisfactory progress.
View Article and Find Full Text PDFEur J Immunol
January 2025
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2 antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown.
View Article and Find Full Text PDFAnn Hematol
January 2025
Service de Thérapie Cellulaire et d'Hématologie Clinique, CHU Estaing, Clermont-Ferrand, France.
The advent of BTK inhibitors has been transformative in the management of patients with chronic lymphocytic leukemia or other B-cell lymphoproliferative disorders. However, emergence of BTK or PLCG2 mutations lead to resistance to these compounds and are now a growing concern in clinical practice. Assessing BTK mutations is now becoming a priority to guide the therapeutic decision at further relapse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!