This study investigated the in vitro degradation of porous poly(L-lactic acid) (PLLA) foams during a 46-week period in pH 7.4 phosphate-buffered saline at 37 degrees C. Four types of PLLA foams were fabricated using a solvent-casting, particulate-leaching technique. The three types had initial salt weight fraction of 70, 80, and 90%, and a salt particle size of 106-150 microm, while the fourth type had 90% initial weight fraction of salt in the size range 0-53 microm. The porosities of the resulting foams were 0.67, 0.79, 0.91, and 0.84, respectively. The corresponding median pore diameters were 33, 52, 91, and 34 microm. The macroscopic degradation of PLLA foams was independent of pore morphology with insignificant variation in foam weight, thickness, pore distribution, compressive creep behavior, and morphology during degradation. However, decrease in melting temperature and slight increase in crystallinity were observed at the end of degradation. The foam half-lives based on the weight average molecular weight were 11.6+/-0.7 (70%, 106-150 microm), 15.8+/-1.2 (80%, 106-150 microm), 21.5+/-1.5 (90%, 106-150 microm), and 43.0+/-2.7 (90%, 0-53 microm) weeks. The thicker pore walls of foams prepared with 70 or 80% salt weight fraction as compared to those with 90% salt weight fraction contributed to an autocatalytic effect resulting in faster foam degradation. Also, the increased pore surface/volume ratio of foams prepared with salt in the range 0-53 microm enhanced the release of degradation products thus diminishing the autocatalytic effect and resulting in slower foam degradation compared to those with salt in the range 106-150 microm. Formation and release of crystalline PLLA particulates occurred for foams fabricated with 90% salt weight fraction at early stages of degradation. These results suggest that the degradation rate of porous foams can be engineered by varying the pore wall thickness and pore surface/volume ratio.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0142-9612(00)00048-x | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA.
The inherent heterogeneity, poor compatibility with polymers, and dark color of lignin limit its application in composites. In this study, original lignin (OL) was fractionated sequentially using four green organic solvents to obtain lignin fractions with different chemical structures. These well-defined lignin fractions were then blended with polybutylene succinate (PBS) to fabricate biocomposites.
View Article and Find Full Text PDFClin Transplant
January 2025
Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Canada.
Introduction: Preclinically, 24-hour continuous Ex-Situ Lung Perfusion (ESLP) is the longest duration achieved in large animal models and rejected human lungs. Here, we present our 36-hour Negative Pressure Ventilation (NPV)-ESLP protocol applied to porcine and rejected human lungs.
Methods: Five sets of donor domestic pig lungs (45-55 kg) underwent 36-hour NPV-ESLP.
Plant Foods Hum Nutr
January 2025
Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, México.
Grape pomace (GP) is a by-product rich in phytochemicals, including extractable polyphenols (EPPs) and non-extractable polyphenols (NEPPs), which have distinct metabolic fates that may affect their biological activities. The benefits of GP have been reported in relation to obesity and its comorbidities, particularly when administered preventively focusing on EPPs. Therefore, the aim of this study was to investigate the effects of EPPs and NEPPs from GP as a treatment for obesity and its associated metabolic alterations.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Importance: The proportion of colorectal cancer (CRC) cases attributable to excess weight, known as population attributable fraction (PAF), has been commonly based on measures of body mass index (BMI). Central obesity metrics, such as waist circumference (WC) and waist to hip ratio (WHR), are potentially better indicators of adiposity and have demonstrated stronger associations with CRC incidence.
Objectives: To examine PAFs of CRC cases that are attributable to high WC and WHR and compare them to those attributable to high BMI.
JMIR Rehabil Assist Technol
January 2025
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Consiglio Nazionale delle Ricerche, via Alfonso Corti, 12, Milan, 20133, Italy, 39 02 2369 993.
Background: Spinal cord injuries (SCIs) cause debilitating secondary conditions such as severe muscle deterioration, cardiovascular, and metabolic dysfunctions, significantly impacting patients' quality of life. Functional electrical stimulation (FES) combined with cycling exercise (FES-cycling) has shown promise in improving muscle function and health in individuals with SCI.
Objective: This pilot study aimed to investigate the potential role of multiparametric magnetic resonance imaging (MRI) to assess muscle health during and after an FES-cycling rehabilitation program.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!