A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Raf-1/MEK/MAPK pathway is necessary for the G2/M transition induced by nocodazole. | LitMetric

Raf-1/MEK/MAPK pathway is necessary for the G2/M transition induced by nocodazole.

J Biol Chem

Diabetes and Metabolism Research Unit, Section of Endocrinology, Evans Department of Medicine and the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA.

Published: October 2000

The dynamic balance between polymerization and depolymerization of microtubules is critical for cells to enter and exit mitosis, and drugs that disrupt this balance, such as taxol, colchicine, and nocodazole, arrest the cell cycle in mitosis. Although the Raf/MEK/MAPK pathway can be activated by these drugs, its role in mitosis has not been addressed. Here, we characterize activation of Raf/MEK/MAPK by nocodazole when mitosis is induced. We find that at early time points (up to 3 h) in nocodazole induction, Raf/MEK/MAPK is activated, and inhibition of MAPK activation by a MEK inhibitor, PD98059 or U0126, reduces the number of cells entering mitosis by creating a block at G(2). At later time points and in mitosis, activation of MEK/MAPK is severely inhibited, even though Raf-1 activity remains high and can be further increased by growth factor. This inhibition is reversed when cells are released from metaphase and enter G(0)/G(1) phase. In addition, we find that binding of Raf-1 to 14-3-3 is progressively induced by nocodazole, reaching a maximum in mitosis, and that this binding is necessary to maintain mitotic Raf-1 activity. Our present study indicates that activation of the Raf/MEK/MAPK pathway is necessary for the G(2)/M progression.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M002766200DOI Listing

Publication Analysis

Top Keywords

pathway g2/m
8
induced nocodazole
8
raf/mek/mapk pathway
8
activation raf/mek/mapk
8
time points
8
raf-1 activity
8
mitosis
7
nocodazole
5
raf-1/mek/mapk pathway
4
g2/m transition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!