Mcm2-7 proteins that play an essential role in eukaryotic DNA replication contain DNA-dependent ATPase motifs in a central domain that, from yeast to mammals, is highly conserved. Our group has reported that a DNA helicase activity is associated with a 600 kDa human Mcm4, 6 and 7 complex. The structure of the Mcm4,6,7 complex was visualized by electron microscopy after negative staining with uranyl acetate. The complex contained toroidal forms with a central channel and also contained structures with a slit. Gel-shift analysis indicated that the level of affinity of the Mcm4,6,7 complex for single-stranded DNA was comparable to that of SV40 T antigen, although the Mcm4,6,7 complex required longer single-stranded DNA for the binding than did SV40 T antigen. The nucleoprotein complexes of Mcm4,6,7 and single-stranded DNA were visualized as beads in a queue or beads on string-like structures. The formation of these nucleoprotein complexes was erased by Mcm2 that is a potential inhibitor of the Mcm4,6,7 helicase. We also found that the DNA helicase activity of Mcm4,6,7 complex was inhibited by the binding of Mcm3,5 complex. These results support the notion that the Mcm4,6,7 complex functions as a DNA helicase and the formation of 600 kDa complex is essential for the activity.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.2000.3865DOI Listing

Publication Analysis

Top Keywords

mcm467 complex
24
single-stranded dna
16
dna helicase
12
complex
10
dna
8
dna binding
8
mcm467
8
activity mcm467
8
helicase activity
8
600 kda
8

Similar Publications

The amino-terminal region of eukaryotic MCM4 is characteristic of the presence of a number of phosphorylation sites for CDK and DDK, suggesting that the region plays regulatory roles in the MCM2-7 helicase function. However, the roles are not fully understood. We analyzed the role of the amino-terminal region of human MCM4 by using MCM4/6/7 helicase as a model for MCM2-7 helicase.

View Article and Find Full Text PDF

An MCM4 mutation detected in human cancer cells from endometrium was characterized. The mutation of G486D is located within MCM-box and the glycine at 486 in human MCM4 is conserved in Saccharomyces cerevisiae MCM4 and Sulfolobus solfataricus MCM. This MCM4 mutation affected human MCM4/6/7 complex formation, since the complex containing the mutant MCM4 protein is unstable and the mutant MCM4 protein is tend to be degraded.

View Article and Find Full Text PDF

A number of gene mutations are detected in cells derived from human cancer tissues, but roles of these mutations in cancer cell development are largely unknown. We examined G364R mutation of MCM4 detected in human skin cancer cells. Formation of MCM4/6/7 complex is not affected by the mutation.

View Article and Find Full Text PDF

The Mini-chromosome maintenance (Mcm) proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes.

View Article and Find Full Text PDF

Expression, purification and biochemical characterization of Schizosaccharomyces pombe Mcm4, 6 and 7.

BMC Biochem

February 2013

Graduate Program in Genetics, Molecular and Cell Biology, University of Southern California, Los Angeles, CA 90089, USA.

Background: The hetero-hexamer of the eukaryotic minichromosome maintenance (MCM) proteins plays an essential role in replication of genomic DNA. The ring-shaped Mcm2-7 hexamers comprising one of each subunit show helicase activity in vitro, and form double-hexamers on DNA. The Mcm4/6/7 also forms a hexameric complex with helicase activity in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!