The cell cycle-regulated protein serine/threonine NIMA-related kinase 2 (Nek2), which shows a predominant localization at centrosomes, is identified as a protein which interacts with protein phosphatase 1 (PP1) using the yeast two-hybrid system. Complex formation between Nek2 and PP1 is supported by co-precipitation of the two proteins using transfected expression constructs of Nek2 and the endogenous Nek2/PP1 proteins. The sequence KVHF in the C-terminal region of Nek2, which conforms to the consensus PP1-binding motif, is shown to be essential for the interaction of Nek2 with PP1. Nek2 activity increases with autophosphorylation and addition of phosphatase inhibitors and decreases in the presence of PP1. PP1 is a substrate for Nek2 and phosphorylation of PP1gamma(1) on two C-terminal sites reduces its phosphatase activity. The presence of a ternary complex containing centrosomal Nek2-associated protein (C-Nap1), Nek2 and PP1 has also been demonstrated, and C-Nap1 is shown to be a substrate for both Nek2 and PP1 in vitro and in cell extracts. The implications of kinase-phosphatase complex formation involving Nek2 and PP1 are discussed in terms of the coordination of centrosome separation with cell cycle progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221174 | PMC |
http://dx.doi.org/10.1042/0264-6021:3490509 | DOI Listing |
Cell Cycle
April 2023
School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland.
The centrosome acts as a protein platform from which proteins are deployed to function throughout the cell cycle. Previously, we have shown that the prolyl isomerase Cyclophilin A (CypA) localizes to the centrosome in interphase and re-localizes to the midbody during mitosis where it functions in cytokinesis. In this study, investigation of CypA by SDS-PAGE during the cell cycle reveals that it undergoes a mobility shift during mitosis, indicative of a post-translational modification, which may correlate with its subcellular re-localization.
View Article and Find Full Text PDFJ Physiol Biochem
February 2021
Department of General Surgery, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China.
Never in mitosis gene A-related kinase 2 (NEK2) has been recognized as an oncogene involved in the initiation and progression of various human cancers. However, our knowledge is still lacking in regard to the function of NEK2 in gastric cancer, the most common cancer in Eastern Asia associated with poor prognosis. Therefore, in the present study, we investigated the association of NEK2 with gastric cancer.
View Article and Find Full Text PDFBMC Cell Biol
November 2017
Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA.
Background: The primary cilium is an extension of the cell membrane that encloses a microtubule-based axoneme. Primary cilia are essential for transmission of environmental cues that determine cell fate. Disruption of primary cilia function is the molecular basis of numerous developmental disorders.
View Article and Find Full Text PDFOncol Rep
October 2016
Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China.
NIMA-related expressed kinase 2 (NEK2) participates in the carcinogenesis and progression of certain types of cancer, however, its expression and roles in the development of hepatocellular carcinoma (HCC) remains unknown. Here, we found that NEK2 expression was significantly upregulated in both human HCC tissues and cell lines, and increased NEK2 expression in HCC was significantly correlated with clinical progression of HCC in patients. Knockdown of NEK2 in HCC cells inhibited HCC progression, as determined by the suppressed cell proliferation, invasion and metastasis.
View Article and Find Full Text PDFCell Death Dis
April 2014
Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Liver kinase B1 (LKB1) is a tumor suppressor mutationally inactivated in Peutz-Jeghers syndrome (PJS) and various sporadic cancers. Although LKB1 encodes a kinase that possesses multiple functions, no individual hypothesis posed to date has convincingly explained how loss of LKB1 contributes to carcinogenesis. In this report we demonstrated that LKB1 maintains genomic stability through the regulation of centrosome duplication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!