An experiment involving a total of 61 crossbred boars evaluated the effects of dietary Se and vitamin E on spermatogenic development at various stages of sexual development and the prostaglandin F2alpha (PGF2alpha) content in the seminal vesicle and prostate glands at 18 mo of age. The experiment from 5.4 to 9 mo of age was conducted as a 2 x 2 factorial in a randomized complete block design. Dietary Se at 0 or .5 ppm was the first factor and vitamin E at 0 or 220 IU/kg diet was the second. From 9 to 18 mo of age, a group of sexually active and inactive boars was a third factor. Treatment diets were fed from weaning (28 d of age) to the end of the experiment. Three boars per treatment group at 5.4 (105 kg BW), 6.2 (130 kg BW), and 9.0 (150 kg BW) mo of age were killed and the testes collected. From 9 to 18 mo of age, three boars from each dietary treatment group were used for semen collection, and another set of three to four boars from each treatment group remained sexually inactive. At 18 mo, both sets of boars were killed and their testes, prostates, and seminal vesicles were collected. The testis at each age was evaluated for sperm reserve numbers and germ and Sertoli cell populations. At 5.4 or 6.2 mo of age, testicular sperm reserves were not affected by dietary Se (P > .15), at 9.0 mo of age there was a trend for a higher (P < .10) number of sperm reserves, and by 18 mo of age the Se-fed boars had higher (P < .01) numbers of sperm reserves. Vitamin E had no effect (P > .15) on testicular sperm reserves at any age period. Boars fed dietary Se had a greater number of Sertoli cells (P < .01) and round spermatids (P < .01) at 6.2 mo of age, but by 18 mo of age the boars fed Se had more Sertoli cells (P < .05), more secondary spermatocytes (P < .01), and more round spermatids (P < .05). Vitamin E did not affect Sertoli or germ cell populations at the various ages. Boars at 18 mo of age had lower PGF2alpha concentrations in the prostate (P < .05) and seminal vesicles (P < .01) when vitamin E was fed, whereas Se had no effect. Sexually active boars had lower PGF2alpha concentrations in the seminal vesicles (P < .01) than sexually inactive boars, but there was no effect (P > .15) of sexual activity on the number of Sertoli cells, primary or secondary spermatocytes, or round spermatids. Our results indicate that Se has a role in establishing the number of boar spermatozoal reserves and Sertoli cells, whereas supplemental vitamin E did not affect these criteria.

Download full-text PDF

Source
http://dx.doi.org/10.2527/2000.7861537xDOI Listing

Publication Analysis

Top Keywords

sperm reserves
16
sertoli cells
16
age
14
boars
13
three boars
12
treatment group
12
seminal vesicles
12
round spermatids
12
vitamin spermatogenic
8
spermatogenic development
8

Similar Publications

Objective: We aimed to compare highly purified human menopausal gonadotropin (hp-hMG) and recombinant follicle stimulating hormone (rFSH) in short antagonist in vitro fertilization (IVF) cycles of patients with poor ovarian reserve (POR). Limited research exists on this comparison in short antagonist cycles for this patient group.

Materials And Methods: This retrospective cohort study involved 165 POR patients aged 18-45 years who underwent IVF between 2018 and 2022.

View Article and Find Full Text PDF

The objective of this study was to evaluate the impact of the supplementation of varying concentrations of the impermeable disaccharide trehalose on the in vitro and in vivo fertilization capacity of cryopreserved rooster spermatozoa in the original Czech Golden Spotted Hen breed. The control trehalose concentration was 0 mM, while TRE50 (50 mM), TRE100 (100 mM), and TRE200 (200 mM) were used as experimental trehalose concentrations. The kinematic and functional parameters of frozen/thawed spermatozoa were evaluated in vitro using mobile computer-assisted sperm analysis and a flow cytometer.

View Article and Find Full Text PDF

Structural diversity of axonemes across mammalian motile cilia.

Nature

January 2025

Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.

Reproduction, development and homeostasis depend on motile cilia, whose rhythmic beating is powered by a microtubule-based molecular machine called the axoneme. Although an atomic model of the axoneme is available for the alga Chlamydomonas reinhardtii, structures of mammalian axonemes are incomplete. Furthermore, we do not fully understand how molecular structures of axonemes vary across motile-ciliated cell types in the body.

View Article and Find Full Text PDF

Associations of pesticide residue exposure from fruit and vegetable intake with ovarian reserve.

J Nutr

December 2024

Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Fertility Center, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. Electronic address:

Background: We previously reported that the intake of fruits and vegetables (FV) known to have high pesticide contamination in the US food supply is related to lower sperm counts. Whether the same is true for ovarian reserve is unknown.

Methods: Participants were 633 females, 21-45 years, presenting to an academic fertility center.

View Article and Find Full Text PDF

Purpose: To investigate the follicle microenvironments of women with premature ovarian insufficiency (POI), with normal ovarian reserve function, and who are older (age >40 years) and to identify potential therapeutic targets.

Patients And Methods: In total, 9 women who underwent in vitro fertilization(IVF) or intracytoplasmic sperm injection(ICSI) were included in this study. The first punctured follicle of each patient was used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!