Hirschsprung disease, mental retardation, microcephaly, and specific craniofacial dysmorphism were observed in three children from a large, consanguineous, Moroccan family. A fourth child showed similar clinical features, with the exception of Hirschsprung disease. The association of these abnormalities in these children represents the Goldberg-Shprintzen syndrome (OMIM 235730). Mutation scanning of genes potentially involved in Hirschsprung disease, RET, GDNF, EDN3, and EDNRB, showed a sequence variant, Ser305Asn, in exon 4 of the EDNRB gene in the index patient of this family. The Ser305Asn substitution present in two of the four patients and four healthy relatives and absent in one of the remaining two patients illustrates the difficulties in interpreting the presence of mutations in families with Hirschsprung disease. It is unlikely that the EDNRB variant contributes to the phenotype. This consanguineous family might be useful for the identification of a Goldberg-Shprintzen locus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1734390PMC

Publication Analysis

Top Keywords

hirschsprung disease
20
consanguineous family
8
mental retardation
8
goldberg-shprintzen syndrome
8
hirschsprung
5
disease
5
family hirschsprung
4
disease microcephaly
4
microcephaly mental
4
retardation goldberg-shprintzen
4

Similar Publications

Rare and common genetic variants underlying the risk of Hirschsprung's disease.

Hum Mol Genet

January 2025

Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China.

Hirschsprung's disease (HSCR) is a congenital enteric neuropathic disorder characterized by high heritability (>80%) and polygenic inheritance (>20 genes). The previous genome-wide association studies (GWAS) identified several common variants associated with HSCR and demonstrated increased predictive performance for HSCR risk in Europeans using a genetic risk score, there remains a notable gap in knowledge regarding Chinese populations. We conducted whole exome sequencing in a HSCR case cohort in Chinese.

View Article and Find Full Text PDF

Long-segment Hirschsprung disease (HSCR) presents significant challenges in surgical management, often requiring extensive bowel mobilization and creative techniques to achieve tension-free anastomosis. Colonic derotation offers a viable solution for preserving bowel length and maintaining the ileocecal valve, which is crucial for postoperative bowel function. The procedure involves extensive colonic mobilization and strategic vascular divisions of the right and middle colic vessels while preserving the ileocolic and marginal arteries, followed by a 180° counterclockwise rotation of the colon around the ileocolic vascular axis.

View Article and Find Full Text PDF

Introduction: Colonic manometry (CM) is a diagnostic procedure used to evaluate pediatric patients with refractory constipation, fecal incontinence, Hirschsprung disease, and pediatric intestinal pseudo-obstruction. Pan-colonic high-amplitude propagated contractions (HAPCs), measured by CM, reflect an intact neuromuscular function of the colon. Current guidelines recommend starting CM with fasting recording for 1-2 h, but no prior evaluation has determined the diagnostic yield of the fasting phase.

View Article and Find Full Text PDF

A primary pull-through for Hirschsprung's disease (HD) requires confirmation of normal ganglionic bowel by intraoperative biopsies to determine the level of resection. Despite this, aganglionic bowel that is not fully resected (so-called "transition zone pull-throughs") is reported in 15%-19% of patients. We hypothesize that this may result from insufficient biopsies sent for intraoperative diagnosis.

View Article and Find Full Text PDF

The glycosylphosphatidylinositol (GPI) is a glycol-lipid that anchors several proteins to the cell surface. The GPI-anchor pathway is crucial for the correct function of proteins involved in cell function, and it is fundamental in early neurogenesis and neural development. The PIG gene family is a group of genes involved in this pathway with six genes identified so far, and defects in these genes are associated with a rare inborn metabolic disorder manifesting with a spectrum of clinical phenotypes in newborns and children.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!