DNAse sensitive chromatin, putative transcriptionally competent sequences, exists either as pan-nuclear speckles in cells with nuclei which exhibit a flat geometry, or as a shell apposed to the nuclear envelope in cells with spheroidal nuclei. To test the hypothesis that DNAse sensitive chromatin is similarly associated with the nuclear periphery in cell types with a very flat geometry such as 3T3 fibroblasts, cells were subjected to hypotonic expansion to change their nuclei from a flat ellipsoid to a spheriod. This was based on the assumption that such a spatial association is not resolvable due to the interdigitation at the nuclear midplane of DNAse sensitive chromatin associated with the upper and lower nuclear surfaces. In situ nick translation was used to visualize the distribution of DNAse sensitive chromatin as a function of nuclear geometry. Both unexpanded and expanded cells exhibit DNAse sensitive chromatin as a dome at the apical side of the nucleus, i.e., that aspect of the cell facing the culture medium. The results argue for a polarized association of DNAse sensitive chromatin with the nuclear envelope and indicate that the nuclear periphery may function as a compartment for the spatial coupling of transcription and nucleo-cytoplasmic transport.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!