In the process of amphibian development, an embryonic body plan is established through cell division, sequential gene expression, morphogenesis and cell differentiation. The mechanism of body patterning is complex and includes multiple induction events. Activin, a TGF-beta family protein, can induce several kinds of mesodermal and endodermal tissues in animal cap explants in a dose-dependent manner. In a recent study of the role of activin in organogenesis, we succeeded in raising a beating heart by treating animal caps with a high concentration of activin. Activin also participates in kidney organogenesis in combination with retinoic acid. An embryonic kidney induced by activin and retinoic acid in vitro can function in vivo when it is transplanted into a larva in which pronephros rudiments have already been removed. Further, the activin-treated animal caps clearly show organizer actions that are closely related to body patterning along the anteroposterior axis. These experiments will help to serve as a model system for understanding organogenesis and body patterning at the cellular and molecular levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0305-0491(00)00195-4 | DOI Listing |
PLoS One
January 2025
Department of Physiology, Biophysics, and Neurosciences; Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
The mechanisms underlying the establishment of asymmetric structures during development remain elusive. The wing of Drosophila is asymmetric along the Anterior-Posterior (AP) axis, but the developmental origins of this asymmetry is unknown. Here, we investigate the contribution of cell recruitment, a process that drives cell fate differentiation in the Drosophila wing disc, to the asymmetric shape and pattern of the adult wing.
View Article and Find Full Text PDFHumans rarely speak without producing co-speech gestures of the hands, head, and other parts of the body. Co-speech gestures are also highly restricted in how they are timed with speech, typically synchronizing with prosodically-prominent syllables. What functional principles underlie this relationship? Here, we examine how the production of co-speech manual gestures influences spatiotemporal patterns of the oral articulators during speech production.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
West Virginia University, Morgantown, WV, USA.
Hox genes are highly conserved developmental regulators instrumental to the formation of a wide range of diverse body plans across metazoans. While significant progress in the field of Hox gene research has been made, persistent challenges in unraveling their mechanisms of action and full repertoire of functions remain. To date, investigations of Hox gene function have been primarily conducted in research models belonging to ecdysozoa and vertebrata.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Yale Center For Genome Analysis, West Haven, CT, USA.
Hox genes are crucial in determining segmentation identity in developing embryos, which ultimately sets an anteroposterior body axis. Over a century of research has discovered the fundamentals of the Hox gene and protein function in animal development and diseases. However, there are still fundamental questions about the specificity of HOX function.
View Article and Find Full Text PDFDevelopment
January 2025
Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
Early embryos display a remarkable ability to regulate tissue patterning in response to changes in tissue size. However, it is not clear whether this ability continues into post-gastrulation stages. Here, we performed targeted removal of dorsal progenitors in the zebrafish tailbud using multiphoton ablation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!