Mitogenic phospholipase D activity is restricted to caveolin-enriched membrane microdomains.

Biochem Biophys Res Commun

Department of Biological Sciences, Hunter College of the City University of New York, 695 Park Avenue, New York, New York, 10021 USA.

Published: June 2000

Phospholipase D (PLD) activity is elevated in response to the oncogenic stimulus of several signaling oncogenes. PLD activity is also elevated in response to peptide growth factors, indicating that PLD likely plays an important role in mitogenic signaling. Many proteins that mediate mitogenic signaling are localized in caveolin-enriched membrane microdomains (CEMMs). We report here that the elevated PLD activity in NIH 3T3 cells transformed by activated oncogenic forms of Src, Ras, and Raf is largely restricted to the CEMMs. Likewise, the PLD activity stimulated by epidermal growth factor is also restricted to the CEMMs. Although both PLD1 and PLD2 were found in CEMMs, neither was particularly enriched in the CEMMs of the transformed relative to the parental cells, indicating that it is the specific activity of PLD that is increased in the CEMMs. An apparent PLD substrate specificity in transformed cells for phosphatidylcholine lacking arachidonate acyl groups is also explained by the localization of activity in the CEMMs where [(3)H]arachidonate-labeled PC was excluded. These data indicate that mitogenic signals through PLD are initiated in CEMMs where many signaling molecules colocalize.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.2000.2907DOI Listing

Publication Analysis

Top Keywords

pld activity
16
caveolin-enriched membrane
8
membrane microdomains
8
pld
8
activity elevated
8
elevated response
8
mitogenic signaling
8
cemms
8
restricted cemms
8
activity
7

Similar Publications

Cultivation of edible mushrooms on straw can significantly reduce production costs, provide notable environmental and ecological benefits. However, the molecular mechanisms via which mushrooms utilize straw are not well understood. We conducted a comparative transcriptomic analysis of oyster mushrooms cultivated on two different biomass substrates, namely, corncob and tobacco straw at various developmental stages.

View Article and Find Full Text PDF

Abscisic Acid, Microtubules and Phospholipase D-Solving a Cellular Bermuda Triangle.

Int J Mol Sci

December 2024

Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.

Rice plants are important food crops that are sensitive to cold stress. Microtubules (MTs) are highly associated with plant response to cold stress. The exogenous application of abscisic acid (ABA) can transiently induce the cold stability of microtubules.

View Article and Find Full Text PDF

New derivatives of the -decaborate anion [BH-O(CH)O(CH)C(O)-L-OCH] (An) (: L = Trp; : L = His; : L = Met; : L = Ala(2-oxopyrrolidin-3-yl) (Pld) were synthesized and isolated as tetraphenylphosphonium salts (PhP)An. Anions ; ; , and contain a pendant functional group from the L-tryptophan methyl ester, L-histidine methyl ester, L-methionine methyl ester, or methyl 2-amino-3-(2-oxopyrrolidin-3-yl)propanoate (-Trp-OCH, -His-OCH, -Met-OCH, or -Pld-OCH) residue, respectively, bonded with the boron cluster anion through the oxybis[(ethane-2,1-diyl)oxy] spacer. This pacer is formed as a result of the nucleophilic opening of the attached dioxane molecule in the [BHO(CH)O] starting derivative.

View Article and Find Full Text PDF

Metabolic syndrome (MetS) is a cluster of metabolic abnormalities, including visceral obesity, dyslipidemia, and insulin resistance. In this regard, visceral white adipose tissue (vWAT) plays a critical role, influencing energy metabolism, immunomodulation, and oxidative stress. Adipose-derived stem cells (ADSCs) are key players in these processes within vWAT.

View Article and Find Full Text PDF

Chemical Probes for Investigating the Endocannabinoid System.

Curr Top Behav Neurosci

January 2025

Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.

Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CBR) and type 2 (CBR) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!