Modeling Orthokinetic Coagulation in Spatially Varying Laminar Flow.

J Colloid Interface Sci

Department of Civil Engineering, Auburn University, 238 Harbert Engineering Center, Auburn, Alabama, 36849

Published: July 2000

An orthokinetic coagulation model including the effects of agglomeration and local stress-induced aggregate breakup was developed. This model was used to simulate coagulation in the flow between two eccentrically located and rotating cylinders. Four methods of modeling coagulation in the flow system were examined. The first technique used a volume-weighted average of the local strain rates, while a second method used an equivalent volume-weighted power (G). A third method treated each volume element as a separate batch reactor and determined a final volume-averaged floc population. The final modeling technique applied mass transfer between each of the elements. Results indicated that substantial differences in average particle diameters and populations were generated with each of the methods, especially where mass transfer between the elements was considered. It was concluded that mass transfer between regions of varying flow strain rate and/or velocity gradient should be included in accurate coagulation modeling. Copyright 2000 Academic Press.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jcis.2000.6829DOI Listing

Publication Analysis

Top Keywords

mass transfer
12
orthokinetic coagulation
8
coagulation flow
8
transfer elements
8
coagulation
5
modeling
4
modeling orthokinetic
4
coagulation spatially
4
spatially varying
4
varying laminar
4

Similar Publications

Because coal seam mining with high geostress and high gas pressure is prone to coal-rock-gas compound dynamic disasters, a disaster energy equation considering the influence of roof elastic energy is established, and a disaster energy criterion considering the influence of roof elastic energy is derived and introduced into COMSOL software to conduct numerical simulations of coal seam mining under different geostress and gas pressures. The study revealed that the increase of ground stress reduces the gas pressure required for disaster occurrence. When the gas pressure reaches a certain value, the disaster will occur even if the ground stress is very small.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation technology is regarded as a promising strategy for global freshwater shortage owing to its green and sustainable desalination process. Graphene aerogel (GA) is widely utilized in the design of solar-driven steam generation systems due to its excellent photothermal conversion efficiency and broad spectral absorption. Given the significant impact of hydrophilicity and thermal insulation on the performance of evaporators, nitrogen doping in the graphene structure not only effectively enhances its wettability but also allows for moderate tuning of its thermal conductivity, thereby optimizing the overall performance of the evaporator.

View Article and Find Full Text PDF

Occurrence and migration of synthetic phenolic antioxidants in food packaging materials: Effects of plastic types and storage temperature.

Sci Total Environ

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; School of Environment and Health, Jianghan University, Wuhan 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.

Synthetic phenolic antioxidants (SPAs) are widely used in food packaging materials to extend product shelf life. Not much attention has been paid to high molecular weight SPAs (HMW SPAs) so far, despite their potential health risks. In this study, we first analyzed the concentrations of ten HMW SPAs in food plastic packaging materials (including 6 plastic categories, n = 116).

View Article and Find Full Text PDF

Aerobic granular sludge (AGS) is usually considered to be a biofilm system consisting of granules only, although practical experience suggests that flocs and granules of various sizes co-exist. This study thus focused on understanding the contribution of flocs and granules of various sizes to nitrification in a full-scale AGS-based wastewater treatment plant (WWTP) operated as a sequencing batch reactor (SBR). The size distribution in terms of total suspended solids (TSS) and the distribution of the nitrifying communities and activities were monitored over 14 months.

View Article and Find Full Text PDF

Assembly-foaming synthesis of hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts for efficient oxygen reduction.

J Colloid Interface Sci

January 2025

Particle Engineering Laboratory (China Petroleum and Chemical Industry Federation), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, PR China. Electronic address:

High-performance electrocatalysts are highly concerned in oxygen reduction reaction (ORR) related energy applications. However, facile synthesis of hierarchically porous structures with highly exposed active sites and improved mass transfer is challenging. Herein, we develop a novel assembly-foaming strategy for synthesizing hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!