Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The brain energy metabolism of rats affected by chronic hepatic encephalopathy due to portacaval shunting was monitored by in vivo 31P-nuclear magnetic resonance spectroscopy before and after ammonium acetate administration. With respect to healthy unoperated and to sham operated controls, portacaval shunting decreased the levels of the nuclear magnetic resonance (NMR) visible brain phosphocreatine and nucleoside phosphates, and the intracellular [free Mg(2+)]. Ammonium acetate induced a further decrease of the levels of the NMR detectable phosphocreatine and nucleoside triphosphates and of the [free Mg(2+)], while the PMR spectra of the brain of non-shunted rats did not show any significant change even after treatment with ammonium acetate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02590641 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!