Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The pathways leading to G:C-->C:G transversions and their repair mechanisms remain uncertain. C/C and G/G mismatches arising during DNA replication are a potential source of G:C-->C:G transversions. The Escherichia coli mutHLS mismatch repair pathway efficiently corrects G/G mismatches, whereas C/C mismatches are a poor substrate. Escherichia coli must have a more specific repair pathway to correct C/C mismatches. In this study, we performed gel-shift assays to identify C/C mismatch-binding proteins in cell extracts of E. COLI: By testing heteroduplex DNA (34mers) containing C/C mismatches, two specific band shifts were generated in the gels. The band shifts were due to mismatch-specific binding of proteins present in the extracts. Cell extracts of a mutant strain defective in MutM protein did not produce a low-mobility complex. Purified MutM protein bound efficiently to the C/C mismatch-containing heteroduplex to produce the low-mobility complex. The second protein, which produced a high-mobility complex with the C/C mismatches, was purified to homogeneity, and the amino acid sequence revealed that this protein was the FabA protein of E.COLI: The high-mobility complex was not formed in cell extracts of a fabA mutant. From these results it is possible that MutM and FabA proteins are components of repair pathways for C/C mismatches in E.COLI: Furthermore, we found that Saccharomyces cerevisiae OGG1 protein, a functional homolog of E.COLI: MutM protein, could specifically bind to the C/C mismatches in DNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC102710 | PMC |
http://dx.doi.org/10.1093/nar/28.13.2551 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!