A thin layered agarose film on microscope slides provides a versatile support for the preparation of arrayed molecular libraries. An activation step leading to the formation of aldehyde groups in the agarose creates reactive sites that allow covalent immobilization of molecules containing amino groups. Arrays of oligonucleotides and PCR products were prepared by tip printing. After hybridization with complementary fluorescence labeled nucleic acid probes strong fluorescence signals of sequence-specific binding to the immobilized probes were detected. The intensity of the fluorescence signals was proportional to the relative amount of immobilized oligonucleotides and to the concentration of the fluorescence labeled probe. We also used the agarose film-coated slides for the preparation of protein arrays. In combination with specific fluorescence labeled antibodies these protein arrays can be used for fluorescence linked immune assays. With this approach different protein tests can be performed in parallel in a single reaction with minimal amounts of the binding reagents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC102751 | PMC |
http://dx.doi.org/10.1093/nar/28.12.e66 | DOI Listing |
Jpn J Ophthalmol
January 2025
Institute for Photon Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Purpose: There is no established method for visualizing the three-dimensional (3D) structure of the aqueous humor outflow tract. This study attempted to visualize the 3D structures of porcine and human ocular tissues, particularly the aqueous humor outflow tract using a transparency reagent composed of 2, 2-thiodiethanol.
Study Design: Clinical and experimental.
J Coll Physicians Surg Pak
January 2025
Department of Microbiology, Armed Forces Institute of Pathology / National University of Medical Sciences, Rawalpindi, Pakistan.
Objective: To evaluate Chicago Sky Blue (CSB) stain, Calcofluor white (CW) stain, and Potassium Hydroxide (KOH) mount for rapid diagnosis of dermatomycosis, using fungal culture as the gold standard.
Study Design: Cross-sectional analytical study. Place and Duration of the Study: This study was conducted in the Department of Microbiology, Armed Forces Institute of Pathology / National University of Medical Sciences, Rawalpindi, Pakistan, from July 2023 to February 2024.
Anal Chem
January 2025
Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
A sensitive fluorescence biosensor was developed for microcystin-LR (MC-LR) detection using H1, H2, and H3 DNA probes as sensing elements. The aptamer in H1 can recognize the target. H2 was labeled with FAM and BHQ.
View Article and Find Full Text PDFPoult Sci
January 2025
Ancera, Inc, Branford, CT 06405, USA. Electronic address:
Necrotic enteritis (NE), caused by the gram-positive, anaerobic bacterium, Clostridium perfringens, results in an estimated $6 billion in annual economic losses to the global poultry industry. C. perfringens is part of the normal microflora of the poultry gastrointestinal tract, but damage to the intestinal epithelium can lead to increased cell proliferation and production of toxins which gives rise to disease.
View Article and Find Full Text PDFChem Sci
January 2025
Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081.
The synthesis of degradable polymer prodrug nanoparticles is still a challenge to be met, which would make it possible to remedy both the shortcomings of traditional formulation of preformed polymers (, low nanoparticle concentrations) and those of the physical encapsulation of drugs (, burst release and poor drug loadings). Herein, through the combination of radical ring-opening polymerization (rROP) and polymerization-induced self-assembly (PISA) under appropriate experimental conditions, we report the successful preparation of high-solid content, degradable polymer prodrug nanoparticles, exhibiting multiple drug moieties covalently linked to a degradable vinyl copolymer backbone. Such a rROPISA process relied on the chain extension of a biocompatible poly(ethylene glycol)-based solvophilic block with a mixture of lauryl methacrylate (LMA), cyclic ketene acetal (CKA) and drug-bearing methacrylic esters by reversible addition fragmentation chain transfer (RAFT) copolymerization at 20 wt% solid content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!