We studied the role of gastrin in regulating cholangiocyte proliferation induced by bile duct ligation (BDL). In purified cholangiocytes, we evaluated (1) for the presence of cholecystokinin-B (CCK-B)/gastrin receptors, (2) the effect of gastrin on D-myo-Inositol 1,4,5-triphosphate (IP(3)) levels, and (3) the effect of gastrin on DNA synthesis and adenosine 3', 5'-monophosphate (cAMP) levels in the absence or presence of CCK-A (L-364,718) and CCK-B/gastrin (L-365,260) receptor inhibitors, 1, 2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetrakis(acetxymethyl ester) (BAPTA/AM; an intracellular Ca(2+) chelator), and 2 protein kinase C (PKC) inhibitors, 1-(5-Isoquinolinylsulfonyl)-2-methylpiperazine (H7) and staurosporin. To evaluate if gastrin effects on cholangiocyte proliferation are mediated by the isoform PKCalpha, we evaluated (1) for the presence of PKCalpha in cholangiocytes and (2) the effect of gastrin on the PKCalpha protein expression in a triton-soluble (containing cytoplasm + membrane) and a triton-insoluble (containing cytoskeleton) fraction. To evaluate the effects of gastrin in vivo, immediately following BDL, gastrin or bovine serum albumin (BSA) was infused by minipumps for 7 days to rats and we measured cholangiocyte growth and cAMP levels. We found CCK-B/gastrin receptors on cholangiocytes. Gastrin increased IP(3) levels. Gastrin inhibited DNA synthesis and cAMP synthesis in cholangiocytes. Gastrin effects on cholangiocyte functions were blocked by L-365,260, BAPTA/AM, H7, and staurosporin but not by L-364,718. Gastrin induced translocation of PKCalpha from cholangiocyte cytoskeleton to membrane. In vivo, gastrin decreased cholangiocyte growth and cAMP synthesis compared with controls. We concluded that gastrin inhibits cholangiocyte growth in BDL rats by interacting with CCK-B/gastrin receptors through a signal transduction pathway involving IP(3), Ca(2+), and PKCalpha.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/jhep.2000.8265 | DOI Listing |
J Clin Invest
December 2024
Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
Understanding cell fate regulation in the liver is necessary to advance cell therapies for hepatic disease. Liver progenitor cells (LPC) contribute to tissue regeneration after severe hepatic injury yet signals instructing progenitor cell dynamics and fate are largely unknown. The Tissue Inhibitor of Metalloproteinases, TIMP1 and TIMP3 control the sheddases ADAM10 and ADAM17, key for NOTCH activation.
View Article and Find Full Text PDFHum Cell
December 2024
Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
Combined hepatocellular cholangiocarcinoma (cHCC-CCA) is a unique subtype of primary liver cancer displaying both hepatocytic and cholangiocytic differentiation. The development of effective treatments for cHCC-CCA remains challenging because of its high heterogeneity and lack of a suitable model system. Using a three-dimensional culture system, we successfully established two novel cHCC-CCA organoid lines from patients undergoing surgical resection for primary liver cancer.
View Article and Find Full Text PDFJCI Insight
December 2024
Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America.
Biliary obstruction and cholangiocyte hyperproliferation are important features of cholangiopathies affecting the large extrahepatic bile duct (EHBD). The mechanisms underlying obstruction-induced cholangiocyte proliferation in the EHBD remain poorly understood. Developmental pathways, including WNT signaling, are implicated in regulating injury responses in many tissues, including the liver.
View Article and Find Full Text PDFBackground: Fibroinflammatory cholangiopathies, such as primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), are characterized by inflammation and biliary fibrosis, driving disease-related complications. In biliary fibrosis, cholangiocytes activated by transforming growth factor-β (TGFβ) release signals that recruit immune cells to drive inflammation and activate hepatic myofibroblasts to deposit the extracellular matrix (ECM). TGFβ regulates stearoyl-CoA desaturase (SCD), an enzyme that catalyzes the synthesis of monounsaturated fatty acids, in stimulating fibroinflammatory lipid signaling.
View Article and Find Full Text PDFGenomics
November 2024
Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China. Electronic address:
The experiment mainly focused on the liver of the hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) with low methionine levels by single-cell RNA-seq under high-lipid diets. Both weight gain rate (WGR) and specific growth rate (SGR) in the MR group were obviously lower than the C group, and the intraperitoneal fat (IPF) in the MR group was obviously enhanced than HL and C groups, which led to more visible growth inhibition and lipid deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!