N-methyl-D-aspartate (NMDA) receptors are commonly found post-synaptically; they mediate fast excitatory neurotransmission in the central nervous system. In this study, we provide immunocytochemical data supporting the existence of presynaptic NMDA receptors in GABAergic terminals using polyclonal antisera raised against the C-terminus of the NMDAR1 subunit. At the light microscope level, rich plexuses of NMDAR1-positive varicose fibers were found in various nuclei in the basal forebrain (bed nucleus of stria terminalis, septum, parastrial nucleus, vascular organ of the lamina terminalis), thalamus (paraventricular nucleus, midline nuclei), and hypothalamus (parvocellular paraventricular nucleus, arcuate nucleus, preoptic nucleus, suprachiasmatic nucleus). In the brainstem, labeled fibers were much less abundant and were confined to the ventral tegmental area, periaqueductal gray, parabrachial nucleus, and locus coeruleus. At the electron microscope level, NMDAR1-immunoreactive terminals examined in the bed nucleus of stria terminalis, parvocellular paraventricular hypothalamic nucleus, and arcuate nucleus formed symmetric synapses, contained darkly stained large dense-core vesicles, and displayed gamma-aminobutyric acid (GABA) immunoreactivity. Terminals with similar ultrastructural features were found in the paraventricular thalamic nucleus. These findings demonstrate the existence of NMDAR1 subunit immunoreactivity in subsets of GABAergic terminals, which raises questions about the potential roles and mechanisms of activation of presynaptic NMDA heteroreceptors in the rat central nervous system. The pattern of distribution and ultrastructural features of these boutons suggest that they may arise from local GABAergic projections interconnecting a group of brain structures mediating stress responses and/or other endocrine, autonomic, and limbic functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1096-9861(20000724)423:2<330::aid-cne10>3.0.co;2-9 | DOI Listing |
Neurobiol Dis
January 2025
Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada. Electronic address:
The consequences of non-pathogenic huntingtin (HTT) reduction in the mature brain are of substantial importance as clinical trials for numerous HTT-lowering therapies are underway; many of which are non-selective in that they reduce both mutant and wild type protein variants. In this study, we injected CaMKII-promoted AAV-Cre directly into the hippocampus of adult HTT floxed mice to explore the role of wild-type huntingtin (wtHTT) in adult hippocampal pyramidal neurons and the broader implications of its loss. Our findings reveal that wtHTT depletion results in profound macroscopic morphological abnormalities in hippocampal structure, accompanied by significant reactive gliosis.
View Article and Find Full Text PDFCurr Neuropharmacol
January 2025
Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.
The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA.
Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein ZnT3. Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Fluorescent reporters for glutamate release and postsynaptic Ca signaling are essential tools for quantifying synapse functional heterogeneity across neurons and circuits. However, leveraging these probes for neuroscience requires scalable experimental frameworks. Here, we devised a high-throughput approach to efficiently collect and analyze hundreds of optical recordings of glutamate release activity at presynaptic boutons in cultured rat hippocampal neurons.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Pediatrics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China; Department of Chinese Medicine, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China; Graduate School of Guangzhou University of Chinese Medicine; Guangzhou 510006, China; Department of Proctology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China. Electronic address:
Subchronic exposure to cyanuric acid (CA) and its structural analogue melamine induces long-term effects on brain and behavior in male rodents. To examine if this exposure induced negative effects on cognitive function in females, we examined the behavioral performance and further attempted to investigate synaptic and neuronal function. CA was intraperitoneal treated with 20 or 40 mg/kg/day to adolescent female rats for 4 consecutive weeks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!