The aim of the study was to determine optimal hydrolysis time for the Feulgen DNA staining of archival formalin fixed paraffin-embedded surgical samples, prepared as single cell suspensions for image cytometric measurements. The nuclear texture features along with the IOD (integrated optical density) of the tumor nuclei were analysed by an automated high resolution image cytometer as a function of duration of hydrolysis treatment (in 5 N HCl at room temperature). Tissue blocks of breast carcinoma, ovarian serous carcinoma, ovarian serous tumor of borderline malignancy and leiomyosarcoma were included in the study. IOD hydrolysis profiles showed plateau between 30 and 60 min in the breast carcinoma and leiomyosarcoma, and between 40 and 60 min in the ovarian serous carcinoma and ovarian serous tumor of borderline malignancy. Most of the nuclear texture features remained stable after 20 min of hydrolysis treatment. Our results indicate that the optimal hydrolysis time for IOD and for nuclear texture feature measurements, was between 40 and 60 min in the cell preparations from tissue blocks of three epithelial and one soft tissue tumor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618570PMC
http://dx.doi.org/10.1155/1999/921840DOI Listing

Publication Analysis

Top Keywords

nuclear texture
16
ovarian serous
16
carcinoma ovarian
12
hydrolysis profiles
8
formalin fixed
8
fixed paraffin-embedded
8
iod integrated
8
integrated optical
8
optical density
8
texture feature
8

Similar Publications

Russia's invasion of Ukraine continues to have a devastating effect on the well-being of Ukrainians and their environment. We evaluated a major environmental hazard caused by the war: the potential for groundwater contamination in proximity to the Zaporizhzhia Nuclear Power Plant (NPP). We quantified groundwater vulnerability with the DRASTIC index, which was originally developed by the United States Environmental Protection Agency and has been used at various locations worldwide to assess relative pollution potential.

View Article and Find Full Text PDF

ShaderNN: A Lightweight and Efficient Inference Engine for Real-time Applications on Mobile GPUs.

Neurocomputing (Amst)

January 2025

Department of Electrical and Computer Engineering, University of Maryland at College Park, 8223 Paint Branch Dr, College Park, MD, 20740, USA.

Inference using deep neural networks on mobile devices has been an active area of research in recent years. The design of a deep learning inference framework targeted for mobile devices needs to consider various factors, such as the limited computational capacity of the devices, low power budget, varied memory access methods, and I/O bus bandwidth governed by the underlying processor's architecture. Furthermore, integrating an inference framework with time-sensitive applications - such as games and video-based software to perform tasks like ray tracing denoising and video processing - introduces the need to minimize data movement between processors and increase data locality in the target processor.

View Article and Find Full Text PDF

Topological magnetic skyrmions with helicity state degrees of freedom in centrosymmetric magnets possess great potential for advanced spintronics applications and quantum computing. Till date, the skyrmion study in this class of materials mostly remains focused to collinear ferromagnets with uniaxial magnetic anisotropy. Here, we present a combined theoretical and experimental study on the competing magnetic exchange-induced evolution of noncollinear magnetic ground states and its impact on the skyrmion formation in a series of centrosymmetric hexagonal noncollinear magnets, MnFeCoGe.

View Article and Find Full Text PDF

High-performance lightweight materials are urgently needed because of energy savings and emission reduction. Here, we design a new steel with a low density of 6.41 g/cm, which is a 20% weight reduction compared to the conventional steel.

View Article and Find Full Text PDF

In this research paper, the factors impacting electrical conductivity of the flexible graphite foils (GFs) produced by different forming processes, namely, either by rolling or pressing, were studied. The relationship between electrical conductivity and texture and structure that formed when producing the material was examined. Correlation was determined between the texture sharpness and anisotropy of electrical conductivity, as well as the extent of impact from the substructural characteristics on the properties' values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!