Following infection with Toxoplasma gondii, certain strains of mice, such as BALB/c, are genetically resistant to development of toxoplasmic encephalitis (TE) and establish a latent chronic infection as do humans. Thus, these animals appear to be a suitable model to analyze the mechanism of resistance to TE. Since the mechanism for their genetic resistance is unknown, we examined the role of interferon-gamma (IFN-gamma) tumor necrosis factor-alpha (TNF-alpha) and inducible nitric oxide synthase (iNOS) in the resistance using BALB/c-background IFN-gamma-deficient (IFN-gamma(-/-)) mice. IFN-gamma(-/-) and control mice were infected with the ME49 strain of T. gondii and treated with sulfadiazine to establish chronic infection. After discontinuing sulfadiazine, the IFN-gamma(-/-) mice all died, whereas the control mice all survived. Histological studies revealed remarkable inflammatory changes associated with large numbers of tachyzoites in brains of the IFN-gamma(-/-) mice but not in the control mice after discontinuation of sulfadiazine. Large amounts of mRNA for tachyzoite-specific SAG1 were detected in brains of only the IFN-gamma(-/-) mice. IFN-gamma mRNA was detected in brains of only the control mice, whereas mRNA for TNF-alpha and iNOS were detected in brains of both strains of mice. The amounts of the mRNA for TNF-alpha and iNOS did not differ between these mice. Treatment of IFN-gamma(-/-) mice with recombinant IFN-gamma prevented development of TE. These results demonstrate that IFN-gamma is crucial for genetic resistance of BALB/c mice against TE and that TNF-alpha and iNOS are insufficient to prevent TE in the absence of IFN-gamma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1286-4579(00)00318-xDOI Listing

Publication Analysis

Top Keywords

ifn-gamma-/- mice
20
control mice
16
mice
14
detected brains
12
tnf-alpha inos
12
tumor necrosis
8
necrosis factor-alpha
8
inducible nitric
8
nitric oxide
8
oxide synthase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!