Cotranslational protein transport into dog pancreas microsomes involves the Sec61p complex plus a luminal heat shock protein 70. Posttranslational protein transport into the yeast endoplasmic reticulum (ER) involves the so-called Sec complex in the membrane, comprising a similar Sec61p subcomplex, the putative signal peptide receptor subcomplex, and the heat shock protein 40-type subunit, Sec63p, plus a luminal heat shock protein 70. Recently, human homologs of yeast proteins Sec62p and Sec63p were discovered. Here we determined the concentrations of these two membrane proteins in dog pancreas microsomes and observed that the canine homologs of yeast proteins Sec62p and Sec63p are abundant proteins, present in almost equimolar concentrations as compared with Sec61alphap monomers. Furthermore, we detected fractions of these two proteins in association with each other as well as with the Sec61p complex. The J domain of the human Sec63p was shown to interact with immunoglobulin heavy chain binding protein. Thus, the membrane of the mammalian ER contains components, known from the posttranslationally operating protein translocase in yeast. We suggest that these components are required for efficient cotranslational protein transport into the mammalian ER as well as for other transport processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC16525PMC
http://dx.doi.org/10.1073/pnas.97.13.7214DOI Listing

Publication Analysis

Top Keywords

homologs yeast
12
sec62p sec63p
12
dog pancreas
12
pancreas microsomes
12
protein transport
12
heat shock
12
shock protein
12
sec63p abundant
8
abundant proteins
8
proteins dog
8

Similar Publications

Engineering Saccharomyces cerevisiae for growth on xylose using an oxidative pathway.

Appl Microbiol Biotechnol

January 2025

Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.

The fermentative production of valuable chemicals from lignocellulosic feedstocks has attracted considerable attention. Although Saccharomyces cerevisiae is a promising microbial host, it lacks the ability to efficiently metabolize xylose, a major component of lignocellulosic feedstocks. The xylose oxidative pathway offers advantages such as simplified metabolic regulation and fewer enzymatic steps.

View Article and Find Full Text PDF

The cytoplasmic membrane of bacteria is composed of a phospholipid bilayer made up of a diverse set of lipids. Phosphatidylglycerol (PG) is one of the principal constituents and its production is essential for growth in many bacteria. All the enzymes required for PG biogenesis in have been identified and characterized decades ago.

View Article and Find Full Text PDF

NOC1, NOC2, and NOC3 are conserved nucleolar proteins essential for regulating ribosomal RNA (rRNA) maturation, a process critical for cellular homeostasis. NOC1, in and yeast, enhances nucleolar activity to sustain rRNA processing, whereas its depletion leads to impaired polysome formation, reduced protein synthesis, and apoptosis. These genes have vertebrate homologs called CEBPZ, NOC2L, and NOC3l.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

The Functional Identification of the Gene in the Kidney of .

Int J Mol Sci

January 2025

Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China.

This study aims to identify the function of the () gene in the kidneys of . CYP2E1 is a significant metabolic enzyme involved in the metabolism of various endogenous and exogenous compounds and is associated with the occurrence and progression of multiple diseases. Given 's ability to survive in the extremely arid , we hypothesize that CYP2E1 in its kidneys plays a crucial role in adaptability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!