A laser-powered hydrokinetic system for caries removal and cavity preparation.

J Am Dent Assoc

Department of Radiology, University of the Pacific, School of Dentistry, San Francisco, USA.

Published: June 2000

Background: Laser systems have been developed for the cutting of dental hard tissues. The erbium, chromium:yttrium-scandium-gallium-garnet, or Er,Cr:YSGG, laser system used in conjunction with an air-water spray has been shown to be efficacious in vitro for cavity preparation.

Methods: The authors randomly selected subjects for cavity preparation with conventional air turbine/bur dental surgery or an Er,Cr:YSGG laser-powered system using a split-mouth design. They prepared Class I, III and V cavities, placed resin restorations and evaluated subjects on the day of the procedure and 30 days and six months postoperatively for pulp vitality, recurrent caries, pain and discomfort, and restoration retention. Sixty-seven subjects completed the study.

Results: There were no statistical differences between the two treatment groups for the parameters measured with one exception; there was a statistically significant decrease in discomfort levels for the laser system at the time of cavity preparation for subjects who declined to receive local anesthetic.

Conclusions: The Er,Cr:YSGG laser system is effective for preparation of Class I, III and V cavities and resin restorations are retained by lased tooth surfaces.

Clinical Implications: Hard-tissue cutting lasers are being introduced for use in operative dentistry. In this study, an Er,Cr:YSGG laser has been shown to be effective for cavity preparation and restoration replacement.

Download full-text PDF

Source
http://dx.doi.org/10.14219/jada.archive.2000.0277DOI Listing

Publication Analysis

Top Keywords

cavity preparation
16
ercrysgg laser
12
laser system
12
class iii
8
iii cavities
8
cavities resin
8
resin restorations
8
system
5
cavity
5
preparation
5

Similar Publications

Introduction: Despite progress in research and technological advancements, the delivery of oral health care continues to be plagued by disparities in accessibility and affordability. Dental caries and periodontal disease remain major issues, and new challenges such as socioeconomic disparities and emerging public health dangers also contribute to the complexity of the issue. To address these challenges, dental education and oral healthcare delivery must shift their focus from disease treatment to disease prevention and health promotion.

View Article and Find Full Text PDF

BACKGROUND Dental caries removal is conventionally done using carbide burs, but non-metallic polymer burs have recently been developed with the aim of being more selective and causing less pain. The objective of the study is to evaluate and compare the effectiveness of caries removal, time taken, and patient compliance during restorations using smart bur and carbide burs in pediatric patients. MATERIAL AND METHODS A clinical study was designed and conducted at the Pedodontics Outpatient Department, with a focus on 40 children between 6 and 12 years old, who were split into 2 groups consisting of 20 children each: group 1, using a carbide conventional rotary bur, and group 2, using a smart bur.

View Article and Find Full Text PDF

The main objective of the current study is to compare short-term fluoride release of three ion releasing restorative materials and assess their inhibitory effect on secondary caries. Materials used in this study included, Self-adhesive hybrid composite (group A), Ion releasing flowable composite liner (group B), and alkasite restorative material (group C). Twenty-two discs were fabricated from each material for short-term fluoride release test, conducted on days 1, 7, and 14.

View Article and Find Full Text PDF

Aptamer-molecularly imprinted polymer sensors for the detection of bacteria in water.

Biosens Bioelectron

January 2025

Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, United Kingdom; Centre for Bioengineering & Biomedical Technologies (CBio), University of Bath, Bath, BA2 7AY, United Kingdom. Electronic address:

Bacteria pose a significant threat to human health as they can cause diseases and outbreaks; therefore rapid, easy, and specific detection of bacteria in a short time is crucial. Various methods such as polymerase chain reaction and enzyme-linked immunosorbent assay have been developed for bacteria detection. However, most of these methods require sample preparation, trained personnel, and 2-4 days for identification.

View Article and Find Full Text PDF

Adhesive damage of class V restorations under shrinkage stress and occlusal forces using cohesive zone modeling.

J Mech Behav Biomed Mater

January 2025

Key Lab for Biomechanical Engineering of Sichuan Province, Sichuan University, Chengdu, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin, China. Electronic address:

Objective: This study aims to investigate adhesive damage caused by the synergistic effects of polymerization shrinkage and occlusal forces via finite element analysis (FEA), based on damage mechanics with the cohesive zone model (CZM). The objective is to obtain the adhesive damage distribution and investigate how the material properties of resin composite impact adhesive damage.

Methods: A 3D reconstruction model of an mandibular first molar was constructed through CBCT imaging, and a Class V cavity was prepared using computer-aided engineering (CAE) software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!