Selective and potent inhibition of human CYP2C19 activity by a conformationally targeted antipeptide antibody.

Drug Metab Dispos

Department of Drug Metabolism, Novo Nordisk A/S, Novo Nordisk Park, Maaloev, Denmark.

Published: July 2000

A conformationally targeted anti-peptide antibody was produced by immunizing a rabbit with a cyclized peptide corresponding to a loop region of human CYP2C19 (residues 250-261). In an enzyme-linked immunosorbent assay, the antibody bound strongly to recombinant CYP2C19 and poorly to recombinant CYP2C8, CYP2C9, and CYP2C18. In immunoblotting studies, the antibody bound strongly to recombinant CYP2C19 and weakly to recombinant CYP2C8. No binding to recombinant CYP1A2, CYP2C9, CYP2C18, CYP2D6, CYP2E1, and CYP3A4 was detected. In immunoinhibition experiments, the anti-peptide antibody targeted against CYP2C19 potently inhibited (S)-mephenytoin 4'-hydroxylase activity of human hepatic microsomal fraction (>90%). It had no appreciable effect on ethoxyresorufin O-deethylase (CYP1A2), tolbutamide methyl-hydroxylase (CYP2C9), dextromethorphan O-demethylase (CYP2D6), 4-nitrophenol hydroxylase (CYP2E1), or testosterone 6beta-hydroxylase (CYP3A4) activity of human hepatic microsomal fraction. However, large amounts of purified IgG fractions were able to inhibit up to 35% of paclitaxel 6alpha-hydroxylase (CYP2C8) activity. In conclusion, we have demonstrated that an anti-peptide antibody targeted against residues 250 to 261 of human CYP2C19 selectively and potently inhibited CYP2C19 activity of human hepatic microsomal fraction.

Download full-text PDF

Source

Publication Analysis

Top Keywords

human cyp2c19
12
anti-peptide antibody
12
activity human
12
human hepatic
12
hepatic microsomal
12
microsomal fraction
12
cyp2c19 activity
8
conformationally targeted
8
antibody bound
8
bound recombinant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!