Distinctive properties of the catalase B of Aspergillus nidulans.

FEBS Lett

Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.

Published: June 2000

Aspergillus nidulans catalase B (CatB) was purified to homogeneity and characterized as a hydroperoxidase which resembles typical catalases in some physicochemical characteristics: (1) it has an apparent molecular weight of 360000 and is composed of four glycosylated subunits, (2) it has hydrophobic properties as revealed by extractability in ethanol/chloroform and binding to phenyl-Superose, and (3) it has an acidic isoelectric point at pH 3. 5. Also CatB exhibits some distinctive properties, e.g. it is not inhibited by the presence of 2% sodium dodecyl sulfate, 9 M urea or reducing agents. Furthermore, even though CatB does not exhibit any residual peroxidase activity, it is able to retain up to 38% of its initial catalase activity after incubation with the typical catalase inhibitor 3-amino-1,2,4-triazole.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(00)01637-9DOI Listing

Publication Analysis

Top Keywords

distinctive properties
8
aspergillus nidulans
8
catalase
4
properties catalase
4
catalase aspergillus
4
nidulans aspergillus
4
nidulans catalase
4
catalase catb
4
catb purified
4
purified homogeneity
4

Similar Publications

Preclinical evaluation of the potential PARP-imaging probe [carbonyl-C]DPQ.

EJNMMI Radiopharm Chem

January 2025

Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.

View Article and Find Full Text PDF

Computational Generation of Long-range Axonal Morphologies.

Neuroinformatics

January 2025

Blue Brain Project, EPFL, Chemin des mines 9, 1202, Geneva, Switzerland.

Long-range axons are fundamental to brain connectivity and functional organization, enabling communication between different brain regions. Recent advances in experimental techniques have yielded a substantial number of whole-brain axonal reconstructions. While previous computational generative models of neurons have predominantly focused on dendrites, generating realistic axonal morphologies is more challenging due to their distinct targeting.

View Article and Find Full Text PDF

DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established.

View Article and Find Full Text PDF

The development of probes for the efficient detection of volatile organic compounds is crucial for both human health protection and environmental monitoring. In this study, we successfully synthesized a ratiometric fluorescent sensing material [Eu-UiO-67 (1:1)], featuring dual-emission fluorescence peaks via a one-pot method. This material demonstrated exceptional ratiometric fluorescence recognition properties for liquid styrene and isoprene, achieving low limit of detections (LODs) of 6.

View Article and Find Full Text PDF

The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-AlO and perovskite SrTiO constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO/SrTiO heterostructure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!