Collisions of pyrazine with two classes of self-assembled monolayer (SAM) films are employed to determine whether surface confinement and the resulting alkyl chain orientation, influences low-energy ion-surface reactions. SAM films formed from n-alkanethiols (CH3(CH2)n-S-Au, n = 14-17) and 4-(4-alkoxyphenylbenzenethiols (4-(4-CH3(CH2)mOC6H4)-C6H4-S-Au, m = 14-17) chemisorbed onto Au (111) substrates are known to exhibit a chain-length-dependent odd-even effect that places the terminal C-C bond into different orientations. Ion-surface collisions (20 eV) of pyrazine molecular ion (M = m/z 80) with these surfaces yield reaction product ions corresponding to the addition of hydrogen atoms ([M + H]+ = m/z 81) and methyl groups ([M + CH3]+ = m/z 95) from the surface to the probe ion. Differences in the relative abundance of the reaction product ions are measured as a function of chain length for both classes of SAM film. SAM films with odd chain lengths (n, m = 14 and 16) have a consistently higher abundance of H addition product ions than SAM films with even chain lengths (n, m = 15 and 17). Alternating reactivity is also observed for the addition of CH3, with methyl addition occurring more readily on even-chain-length films. The variations are consistent with the well-characterized orientation differences known to exist for films of this type. Specifically, odd-chain-length films are oriented such that the last C-C bond is more parallel to the plane of the surface than it is for even-chain-length films. The critical element of the parallel orientation is that it leaves, on average, one hydrogen atom on the terminal methyl and both hydrogen atoms on the first underlying methylene in more reactive positions compared to even chain lengths. Conversely, the trend in the relative abundance of CH3 addition indicates that the orientation produced by an even-chain-length film, with the last C-C bond more perpendicular to the surface, allows the probe ion better access to the methyl carbon. Reflection absorption IR spectroscopy (RAIRS) data independently confirm the orientational disposition of the films. The RAIRS data show that the odd-even effect is less dramatic for the n-alkanethiols when compared to 4-(4-alkoxyphenyl)benzenethiols. A smaller difference in ion-surface reactivity is measured for n-alkanethiols, demonstrating that ion-surface reactions can distinguish subtle differences in average orientation. In short, we report that the extent of ion-surface reactions of pyrazine ion with two classes of SAM films is directed by the spatial orientation of the surface-confined species that participate in the reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac0001028DOI Listing

Publication Analysis

Top Keywords

sam films
20
ion-surface reactions
12
c-c bond
12
product ions
12
chain lengths
12
films
10
reactions pyrazine
8
pyrazine classes
8
classes self-assembled
8
alkyl chain
8

Similar Publications

Anchorable Polymers Enabling Ultra-Thin and Robust Hole-Transporting Layers for High-Efficiency Inverted Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.

Currently, the development of polymeric hole-transporting materials (HTMs) lags behind that of small-molecule HTMs in inverted perovskite solar cells (PSCs). A critical challenge is that conventional polymeric HTMs are incapable of forming ultra-thin and conformal coatings like self-assembly monolayers (SAMs), especially for substrates with rough surface morphology. Herein, we address this challenge by designing anchorable polymeric HTMs (CP1 to CP5).

View Article and Find Full Text PDF

Tripodal Triptycenes as a Versatile Building Block for Highly Ordered Molecular Films and Self-Assembled Monolayers.

Acc Chem Res

January 2025

Laboratory for Chemistry and Life Science (CLS), Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.

ConspectusThe design of properties and functions of molecular assemblies requires not only a proper choice of building blocks but also control over their packing arrangements. A highly versatile unit in this context is a particular type of triptycene with substituents at the 1,8,13-positions, called tripodal triptycene, which offers predictable molecular packing and multiple functionalization sites, both at the opposite 4,5,16- or 10 (bridgehead)-positions. These triptycene building blocks are capable of two-dimensional (2D) nested hexagonal packing, leading to the formation of 2D sheets, which undergo one-dimensional (1D) stacking into well-defined "2D+1D" structures.

View Article and Find Full Text PDF

Three new bithiophene imide (BTI)-based organic small molecules, (), (), and (), with varied alkyl side chains, were developed and employed as self-assembled monolayers (SAMs) applied to NiOx films in tin perovskite solar cells (TPSCs). The NiOx layer has the effect of modifying the hydrophilicity and the surface roughness of ITO for SAM to uniformly deposit on it. The side chains of the SAM molecules play a vital role in the formation of a high-quality perovskite layer in TPSCs.

View Article and Find Full Text PDF

Highly Oriented and Ordered Co-Assembly Monolayers for Inverted Perovskite Solar Cells.

Angew Chem Int Ed Engl

December 2024

Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China.

Perovskite solar cells with inverted architecture have remarkable power conversion efficiency (PCE) and operating stability based on self-assembled molecules (SAMs) hole transport layer. Homogeneous distribution and covalent binding mode of SAM monolayers are critical to improving interfacial property and reducing interfacial losses, which can be achieved through molecular design and co-assembly strategy. Here, we propose co-assembly strategy with SAM by employing a novel 2D π-conjugated structure graphdiyne derivative (PAG) with phosphoric acid groups.

View Article and Find Full Text PDF

Aromatic linker-constructed self-assembled monolayers (Ar-SAMs) with enlarged dipole moment can modulate the work function of indium tin oxide (ITO), thereby improving hole extraction/transport efficiency. However, the specific role of the aromatic linkers between the polycyclic head and the anchoring groups of SAMs in determining the performance of perovskite solar cells (PSCs) remains unclear. In this study, we developed a series of phenothiazine-based Ar-SAMs to investigate how different aromatic linkers could affect molecular stacking, the regulation of substrate work function, and charge carrier dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!