The gua promoter (guaP) of Escherichia coli resembles those for ribosomal RNA (rrn) operons and lies in a close back-to-back arrangement with the promoter for xseA (xseP). Transcription from guaP is subject to stringent control and growth-rate-dependent regulation, and to repression by DnaA and PurR. In addition, transcription from guaP is regulated by the cyclic AMP receptor protein (CRP). Plasmid-borne promoter fusions to the receptor gene for chloramphenicol acetyl transferase were used to assess the role of CRP in controlling transcription from guaP and xseP following a downshift of cultures from rich into minimal medium. CRP is required to activate guaBA transcription and repress xseA transcription following downshift. Bandshift assays with a DNA fragment carrying the divergent promoters revealed specific binding of CRP. We propose that CRP, binding to a near-consensus site centred at -117.5, activates transcription from guaP and obstructs transcription from the xseA promoter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6968.2000.tb09146.x | DOI Listing |
FEMS Microbiol Lett
June 2000
Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, SO16 7PX, Southampton, UK.
The gua promoter (guaP) of Escherichia coli resembles those for ribosomal RNA (rrn) operons and lies in a close back-to-back arrangement with the promoter for xseA (xseP). Transcription from guaP is subject to stringent control and growth-rate-dependent regulation, and to repression by DnaA and PurR. In addition, transcription from guaP is regulated by the cyclic AMP receptor protein (CRP).
View Article and Find Full Text PDFMol Gen Genet
January 1992
Department of Biochemistry, University of Southampton, UK.
The guaBA operon determines production of the two enzymes required to convert hypoxanthine to guanine at the nucleotide level during guanine nucleotide biosynthesis. Two DnaA boxes, binding sites for the DNA replication-initiating DnaA protein, are present in the gua operon, one at the gua promoter (guaP) and the other within the guaB coding sequence. Regulation of the guaBA operon by DnaA protein was studied using strains carrying chromosomal gua-lacZ fusions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!