Conventional carbohydrate histochemistry and the binding patterns of 21 lectins were analysed to characterise the glycoconjugate content in the components of the vomeronasal organ of the armadillo Chaetophractus villosus. The mucomicrovillous complex of the sensory epithelium bound most of the lectins studied. No reaction was observed with Con A, PSA, S-Con A and SBA, and the sustentacular cells were-stained with UEA-I, DSL, LEL, STL and Con A. The vomeronasal receptor neurons were labelled with S-WGA, WGA, PNA, UEA-I, STL, Con A, S-Con A, ECL and RCA120. The basal cell layer reacted with S-WGA, WGA, LCA, UEA-I, DSL, LEL, STL, Con A, JAC and VVA. The nonsensory epithelium exhibited a differential staining in relation to the different components. The mucociliary complex stained with ECL, DBA, JAC, RCA120, STL, LCA, PHA-E, PHA-L, LEL, BSL-I and VVA. However, SJA and UEA-I stained the mucus complex lining a subpopulation of columnar cells. The cytoplasm and cell membranes of columnar cells was labelled with DBA, DSL and LCA. The apical region of these cells exhibited moderate reactivity with LEL and SJA. None of the lectins bound specifically to secretory granules of the nonsecretory cells. Basal cells of the nonsensory epithelium were labelled with DSL, LEL, LCA, BSL-I and STL. The vomeronasal glands showed a positive reaction with WGA, DSL, LEL, LCA, DBA, PNA, RCA120 and SBA. Subpopulations of acinar cells were observed with ECL, S-WGA, Con A, S-Con A and DBA. PNA and RCA120 stained the cells lining the glandular ducts. In comparison with previous results obtained in the olfactory mucosa of the same group of armadillos, the carbohydrate composition of the vomeronasal organ sensory epithelium differed from the olfactory sensory epithelium. This is probably related to the different nature of molecules involved in the perireceptor processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1468072 | PMC |
http://dx.doi.org/10.1046/j.1469-7580.2000.19630357.x | DOI Listing |
Cells Tissues Organs
April 2024
Department of Veterinary Anatomy, College of Veterinary Medicine, Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea.
The vomeronasal organ (VNO) is a tubular pheromone-sensing organ in which the lumen is covered with sensory and non-sensory epithelia. This study used immunohistochemistry and lectin histochemistry techniques to evaluate developmental changes, specifically of the glycoconjugate profile, in the horse VNO epithelium. Immunostaining analysis revealed PGP9.
View Article and Find Full Text PDFTissue Cell
April 2018
Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt. Electronic address:
The glycoconjugates pattern of acidic secretions and distribution of chemosensory cells (SCCs) in the respiratory mucosa of dromedary camels were analyzed so as to identify their functional role. Secretions of the goblet cells and mucous glandular cells were analyzed to evaluate the variety of sugar chains, focusing on the acidic glycoconjugates. Using lectin histochemistry, WGA, STL, DBA, SBA, VVA and RCA-120 intensely bound to the goblet cells.
View Article and Find Full Text PDFActa Histochem
October 2017
Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
Glycans in the epithelium play an important role in cell-to-cell communication and adhesion. No detailed evaluation of glycoconjugates in the vomeronasal organs (VNO) of the roe deer has been published previously. The aim of this study was to characterize glycan epitopes in the vomeronasal sensory epithelium (VSE) and non-sensory epithelium (VNSE) using lectin histochemistry.
View Article and Find Full Text PDFParasite
October 2016
College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea.
The localization of carbohydrate terminals in Kudoa septempunctata ST3-infected muscle of olive flounder (Paralichthys olivaceus) was investigated using lectin histochemistry to determine the types of carbohydrate sugar residues expressed in Kudoa spores. Twenty-one lectins were examined, i.e.
View Article and Find Full Text PDFJ Vet Med Sci
March 2014
United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
The olfactory and respiratory mucosae of the Corriedale sheep were examined using lectin histochemistry in order to clarify the histochemical and glycohistochemical differences between these two tissues. The olfactory epithelium was stained with 13 lectins out of 21 lectins examined, while the respiratory epithelium was positive to 16 lectins. The free border of both of the olfactory and respiratory epithelia was stained with 12 lectins: Wheat germ agglutinin (WGA), succinylated-wheat germ agglutinin (s-WGA), Lycopersicon esculentum lectin (LEL), Solanum tuberosum lectin (STL), Datura stramonium lectin (DSL), Soybean agglutinin (SBA), Bandeiraea simplicifolia lectin-I (BSL-I), Ricinus communis agglutinin-I (RCA-120), Erythrina cristagalli lectin (ECL), Concanavalin A (Con A), Phaseolus vulgaris agglutinin-E (PHA-E) and Phaseolus vulgaris agglutinin-L (PHA-L).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!