15N isotope effects have been measured on the hydrolysis of glutamine catalyzed by carbamyl phosphate synthetase of Escherichia coli. The isotope effect in the amide nitrogen of glutamine is 1. 0217 at 37 degrees C with the wild-type enzyme in the presence of MgATP and HCO(3)(-) (overall reaction taking place). This V/K isotope effect indicates that breakdown of the tetrahedral intermediate formed with Cys 269 to release ammonia is the rate-limiting step in the hydrolysis. A full isotope effect of 1. 0215 is also seen in the partial reaction catalyzed by an E841K mutant enzyme, whose rate of glutamine hydrolysis is not affected by MgATP and HCO(3)(-). With wild-type enzyme in the absence of MgATP and HCO(3)(-), however, the (15)N isotope effect is reduced to 1. 0157. These isotope effects are interpreted in terms of partitioning of the tetrahedral intermediate whose rate of formation is dependent upon a conformation change which closes the active site after glutamine binding and prepares the enzyme for catalysis. An Ordered Uni Bi mechanism for glutamine hydrolysis that is consistent with the isotope effects and with the catalytic properties of the enzyme is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi000435zDOI Listing

Publication Analysis

Top Keywords

isotope effects
16
15n isotope
12
glutamine hydrolysis
12
tetrahedral intermediate
12
mgatp hco3-
12
catalyzed carbamyl
8
carbamyl phosphate
8
phosphate synthetase
8
wild-type enzyme
8
isotope
7

Similar Publications

The superposition of heavy metals (HMs) from multiple anthropogenic sources in geochemical anomaly areas makes it difficult to discriminate prime sources in atmospheric HMs. This study utilized a combination of microscopic features, positive matrix factorisation, and Pb isotope fingerprints to trace the main sources of HMs bound to total suspended particulates (TSP) at a pollution site (Msoshui: MS) and control site (Lushan: LS) in northwestern Guizhou. The results reveal that the concentrations of Cd, Pb, Cr, As, Cu, Ni, and Zn in the TSP of LS are 3.

View Article and Find Full Text PDF

Investigations of the spatial-temporal variations of nutrients within mangrove coastal zones are essential for assessing the environmental status of an aquatic ecosystems. However, major processes controlling nitrate cycle along the submarine groundwater discharge (SGD) pathway from the mangrove areas to adjacent tidal creek remain underexplored. A time series measurement over a 25 h tidal cycle was conducted in Qinglan Bay tidal creek (Hainan Island, China).

View Article and Find Full Text PDF

Identifying dissolved reactive phosphorus sources in agricultural runoff and leachate using phosphate oxygen isotopes.

J Contam Hydrol

January 2025

USDA ARS, National Soil Erosion Research Laboratory, West Lafayette, IN 47907, United States of America.

Agricultural phosphorus (P) losses may result from either recently applied fertilizers or from P accumulated in soil and sediment. While both P sources pose an environmental risk to freshwater systems, differentiating between sources is crucial for identifying and implementing management practices to decrease loss. In this study, laboratory rainfall simulations were completed on runoff boxes and undisturbed soil columns before and after fertilizer application.

View Article and Find Full Text PDF

The biological nitrogen removal process in wastewater treatment inevitably produces nitrous oxide (NO), a potent greenhouse gas. Coarse bubble mixing is widely employed in wastewater treatment processes to mix anoxic tanks; however, its impacts on NO emissions are rarely reported. This study investigates the effects of coarse bubble mixing on NO emissions in a pilot-scale mainstream nitrite shunt reactor over a 50-day steady-state period.

View Article and Find Full Text PDF

Acridine/Lewis Acid Complexes as Powerful Photocatalysts: A Combined Experimental and Mechanistic Study.

ACS Catal

October 2024

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.

A class of generated Lewis acid (LA) activated acridine complexes is reported, which act as potent photochemical catalysts for the oxidation of a variety of protected secondary amines. Acridine/LA complexes exhibit tunable excited state reduction potentials ranging from +2.07 to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!