A complex of short-basis photogrammetry, methods and software for obtaining and analysis of 3D digital models of relief of dentition and its fragments is presented. This complex is intended for planning and evaluation of tooth preparation and quality of prosthetic treatment. The method was used to assess the correctness of dental shape repair by artificial crowns. The complex can form the base for the CAD/CAM technology.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hardware software
4
complex
4
software complex
4
complex producing
4
producing models
4
models teeth]
4
teeth] complex
4
complex short-basis
4
short-basis photogrammetry
4
photogrammetry methods
4

Similar Publications

Implementing the discontinuous-Galerkin finite element method using graph neural networks with application to diffusion equations.

Neural Netw

December 2024

Department of Earth Science and Engineering, Imperial College London, Prince Consort Road, London SW7 2BP, UK; Centre for AI-Physics Modelling, Imperial-X, White City Campus, Imperial College London, W12 7SL, UK.

Machine learning (ML) has benefited from both software and hardware advancements, leading to increasing interest in capitalising on ML throughout academia and industry. There have been efforts in the scientific computing community to leverage this development via implementing conventional partial differential equation (PDE) solvers with machine learning packages, most of which rely on structured spatial discretisation and fast convolution algorithms. However, unstructured meshes are favoured in problems with complex geometries.

View Article and Find Full Text PDF

Background: The escalating threat of multidrug-resistant organisms (MDROs) in intensive care unit (ICU) demands innovative management strategies to curb the rising infection rates and associated clinical challenges.

Objective: To assess the effectiveness of integrating the multidisciplinary team (MDT) approach with the SHEL (Software, Hardware, Environment, Liveware) model in reducing MDRO infections within ICU settings.

Methods: From January 2021 to April 2024, a prospective, randomized controlled study was conducted in the ICU of Nantong Fourth People's Hospital, enrolling 411 patients with MDRO infections.

View Article and Find Full Text PDF

The advent of in-memory computing has introduced a new paradigm of computation, which offers significant improvements in terms of latency and power consumption for emerging embedded AI accelerators. Nevertheless, the effect of the hardware variations and non-idealities of the emerging memory technologies may significantly compromise the accuracy of inferred neural networks and result in malfunctions in safety-critical applications. This article addresses the issue from three different perspectives.

View Article and Find Full Text PDF

Background: Neurological disorders pose a substantial burden worldwide in healthcare and health research. eHealth has emerged as a promising field given its potential to aid research, with lower resources. With a changing eHealth landscape, identifying available tools is instrumental for informing future research.

View Article and Find Full Text PDF

In-situ quality monitoring during embedded bioprinting using integrated microscopy and classical computer vision.

Biofabrication

January 2025

Biomedical Engineering and CÚRAM, SFI Research Centre for Medical Devices, University of Galway, School of Engineering, University Road, Galway, Ireland, Galway, H91 TK33, IRELAND.

Despite significant advances in bioprinting technology, current hardware platforms lack the capability for process monitoring and quality control. This limitation hampers the translation of the technology into industrial GMP-compliant manufacturing settings. As a key step towards a solution, we developed a novel bioprinting platform integrating a high-resolution camera for in-situ monitoring of extrusion outcomes during embedded bioprinting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!