FhlA is the transcriptional activator of the genes coding for the formate hydrogen lyase system in Escherichia coli. It is activated by the binding of formate and induces transcription by sigma54 RNA polymerase after binding to specific upstream activating sequences (UAS). Sequence comparison had shown that FhlA exhibits a structure composed of three domains, which is typical for sigma54-dependent regulators. By analyzing the N-terminal domain of FhlA of E. coli (amino acids 1-378; FhlA-N) and the rest of the protein (amino acids 379-693; FhlA-C) as separate proteins in vivo and in vitro the functions of the different domains of FhlA were elucidated. The FhlA-C domain is active in ATP hydrolysis and activation of transcription and its activity is neither influenced by the presence of formate nor of the antiactivator HycA. However, it is stimulated in the presence of the FhlA-specific UAS, indicating that this region of FhlA is responsible for DNA binding. FhlA-N is not active itself but able to reduce the activity of full-length FhlA in trans, probably by formation of nonfunctional heterooligomers. The DNA binding site of FhlA was analyzed by hydroxyradical footprinting. Each UAS consists of two binding sites of 16 bp separated by a spacer region. A consensus sequence could be deduced and a model is presented and supported by in vivo data in which a FhlA tetramer binds to the UAS on one side of the DNA helix. Performing an extensive screening we could show that the FhlA regulatory system is conserved in different species of the family Enterobacteriaceae. The analysis of orthologs of FhlA revealed that they are able to functionally replace the E. coli enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-1327.2000.01399.xDOI Listing

Publication Analysis

Top Keywords

dna binding
12
fhla
11
binding site
8
transcriptional activator
8
amino acids
8
binding
6
analysis domain
4
domain structure
4
dna
4
structure dna
4

Similar Publications

Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping.

View Article and Find Full Text PDF

Cryo-EM structure of AAV2 Rep68 bound to integration site AAVS1: insights into the mechanism of DNA melting.

Nucleic Acids Res

January 2025

Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States.

The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states.

View Article and Find Full Text PDF

Gsx2 is a homeodomain transcription factor critical for development of the ventral telencephalon and hindbrain of the mouse. Loss of Gsx2 function results in severe basal ganglia dysgenesis as well as defects in the nucleus tractus solitarius (nTS) of the hindbrain together with respiratory failure at birth. De Mori et al.

View Article and Find Full Text PDF

Elusive modes of Foxp3 activity in versatile regulatory T cells.

Front Immunol

January 2025

Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States.

Foxp3-expressing CD4 regulatory T (Treg) cells play a crucial role in suppressing autoimmunity, tolerating food antigens and commensal microbiota, and maintaining tissue integrity. These multifaceted functions are guided by environmental cues through interconnected signaling pathways. Traditionally, Treg fate and function were believed to be statically determined by the forkhead box protein Foxp3 that directly binds to DNA.

View Article and Find Full Text PDF

is a Gram-negative oncobacterium that is associated with colorectal cancer. The molecular mechanisms utilized by to promote colorectal tumor development have largely focused on adhesin-mediated binding to the tumor tissue and on the pro-inflammatory capacity of . However, the exact manner in which promotes inflammation in the tumor microenvironment and subsequent tumor promotion remains underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!