High-dose cytosine arabinoside (AraC)-containing regimens have shown the highest antileukaemic efficacy of all currently used regimens in the treatment of acute myeloid leukaemia (AML). This study aimed at increasing the antileukaemic potential of high-dose AraC by raising intracellular levels of AraC triphosphate (AraCTP), which is the mediator of cytotoxicity, via biochemical modulation by inhibitors of ribonucleotide reductase (RR) or haematopoietic growth factors (HGFs). Blasts from patients with de novo AML were analysed for their formation of AraCTP under high-dose AraC conditions (20 microM over 3 h) without prior modulation (n = 47) after a 2-h pre-exposure with fludarabine (50 microg/ml) (n = 40) or gemcitabine (30 ng/ml) (n = 40) and after a 48-h pre-exposure to granulocyte colony-stimulating-factor (G-CSF; 100 ng/ml) (n = 27) or granulocyte-macrophage colony-stimulating-factor (GM-CSF; 100 U/ml) (n = 28). Unmodulated formation of AraCTP (median 239.8 ng/107 cells) could not be increased via modulation by gemcitabine (232.4 ng/107 cells) or fludarabine (247.8 ng/107 cells). The lack of effect of RR inhibitors was also observed for all other known metabolites of AraC [Ara-cytosine monophosphate (CMP), Ara-cytosine diphosphate (CDP), AraCDP-choline, Ara-uridine monophosphate (UMP), Ara-uridine diphosphate (UDP) and Ara-uridine triphosphate (UTP)]. In contrast, pre-exposure to HGFs led to significant increases in AraCTP formation (G-CSF 556.0 ng/107 cells, 2.31-fold increase, P < 0.001; GM-CSF 447.9 ng/107 cells, 1.87-fold increase, P < 0.0001). To establish the mechanism responsible for these effects, the activity of the rate-limiting enzyme of AraC metabolism, deoxycytidine kinase (dCK), was investigated (n = 33). In vivo exposure to GM-CSF led to increases in dCK activity from unmodulated values at 0 h (29.8 pmol/min/mg protein) to 34.3 pmol/min/mg protein at 24 h (1.15-fold increase) and 54.5 pmol/min/mg protein at 48 h (1. 83-fold increase). The raise in dCK activity over 48 h was significant (P < 0.013).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2141.2000.02056.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!