The targeting of proteolytic substrates is accomplished by a family of ubiquitin-conjugating (E2) enzymes and a diverse set of substrate recognition (E3) factors. The ligation of a multiubiquitin chain to a substrate can promote its degradation by the proteasome. However, the mechanism that facilitates the translocation of a substrate to the proteasome in vivo is poorly understood. We have discovered that E2 proteins, including Ubc1, Ubc2, Ubc4, and Ubc5, can interact with the 26S proteasome. Significantly, the interaction between Ubc4 and the proteasome is strongly induced by heat stress, consistent with the requirement for this E2 for efficient stress tolerance. A catalytically inactive derivative of Ubc4 (Ubc4(C86A)), which causes toxicity in yeast cells, can also bind the proteasome. Purified proteasomes can ligate ubiquitin to a test substrate without the addition of exogenous E2 protein, suggesting that the ubiquitylation of some proteolytic substrates might be directly coupled to degradation by the proteasome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC85887 | PMC |
http://dx.doi.org/10.1128/MCB.20.13.4691-4698.2000 | DOI Listing |
Sci Rep
January 2025
General Surgery Department, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212000, China.
Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
Background/objectives: Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms.
Methods: We mapped , a ()-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress.
Biomolecules
January 2025
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
RAD18 is a conserved eukaryotic E3 ubiquitin ligase that promotes genome stability through multiple pathways. One of these is gap-filling DNA synthesis at active replication forks and in post-replicative DNA. RAD18 also regulates homologous recombination (HR) repair of DNA breaks; however, the current literature describing the contribution of RAD18 to HR in mammalian systems has not reached a consensus.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
Osteoporosis is a systemic skeletal disorder characterized by reduced bone density and an increased risk of fractures, particularly prevalent in the aging population. Osteoporotic complications, including vertebral compression fractures, hip fractures, and distal forearm fractures, affect over 8.9 million individuals globally, placing a significant economic strain on healthcare systems.
View Article and Find Full Text PDFMedicines (Basel)
January 2025
Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
Introduction: In the central nervous system (CNS), proper interaction between neuronal and glial cells is crucial for the development of mature nervous tissue. Hypomyelinating leukodystrophies (HLDs) are a group of genetic CNS disorders characterized by hypomyelination and/or demyelination. In these conditions, genetic mutations disrupt the biological functions of oligodendroglial cells, which are responsible for wrapping neuronal axons with myelin sheaths.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!