This study examined the effect of fasting on the neural control of ion transport and paracellular permeability in piglet jejunum. Muscle-stripped tissues from fed or 48-h fasted piglets were mounted in Ussing chambers. Neural blockade with tetrodotoxin (TTX) or antagonists of muscarinic or nicotinic receptors caused reductions in basal short-circuit current that were approximately threefold greater in fasted piglets. The TTX-induced reduction in short-circuit current in fasted piglets was due to a decrease in residual ion flux and was abolished in the absence of HCO(-)(3). Intestinal paracellular permeability, as indicated by tissue conductance (G(t)) and fluxes of inulin and mannitol, was significantly increased by fasting. TTX increased inulin flux and G(t) in fed but not fasted piglets. In fasted piglets, carbachol reduced G(t) by 29% and mannitol flux by 27% but had no effect on these parameters in the fed state. We conclude that fasting enhances enteric neural control of basal ion transport and increases paracellular permeability in piglet jejunum. Tonic release of enteric neurotransmitters regulates paracellular permeability in the fed state, and cholinergic stimulation restores fasting-induced elevations in paracellular permeability to fed levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.2000.278.6.R1589 | DOI Listing |
Mol Med
January 2025
Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P. R. China.
Background: Obesity is a significant risk factor for severe acute pancreatitis (SAP) and is typically associated with increased intestinal permeability. Understanding the role of specific molecules can help reduce the risk of developing SAP. Claudin 11 (CLDN11), a member of the Claudin family, regulates the permeability of various internal barriers.
View Article and Find Full Text PDFJ Control Release
January 2025
Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Cardiovascular Sciences Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Neurosurgery Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Resnick Sustainability Center of Catalysis, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Bruce and Ruth Rappaport Cancer Research Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel. Electronic address:
The intricate interplay between human breast milk, nanoparticles, and macromolecules holds promise for innovative nutritional delivery strategies. Compared to bovine milk and infant formula, this study explores human breast milk's role in modulating intestinal permeability and its impact on nanoparticle and macromolecule transport. Comparative analysis with bovine milk and infant formula reveals significant elevations in permeability with human breast milk, accompanied by a decrease in transepithelial electrical resistance, suggesting enhanced paracellular transport.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai, China.
Background: Oxyberberine (OBB) is a naturally occurring isoquinoline alkaloid that is believed to possess various health-promoting properties, including anti-fungus, hepatoprotection, anti-inflammation, and anti-intestinal mucositis effects. Despite several studies reporting the health benefits of OBB in treating ulcerative colitis (UC), its specific mechanism of action has yet to be fully elucidated.
Purpose: This investigation is designed to explore the potential protective efficacy of OBB and the latent mechanism using an model of UC-like inflammatory intestinal cells.
J Am Soc Nephrol
January 2025
Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
Background: The parathyroid calcium-sensing receptor (CASR) controls the release of parathyroid hormone (PTH) in response to changes in serum calcium levels. Activation of the renal CASR increases urinary calcium excretion and is particularly important when CASR-dependent reductions in PTH fail to lower serum calcium. However, the role of the renal CASR in protecting against hypercalcemia and the direct effects of chronic CASR activation on tubular calcium handling remains to be fully elucidated.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Aim: Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!