Nitrate reductase (NaR) catalyses the reduction of nitrate to nitrite via a two-electron transfer. In fungi, the electron donor for NaR is NADPH whereas plants can have two enzymes, NADH:NaR and a bispecific NAD(P)H:NaR. PCR mutagenesis was employed to introduce mutations into the niaD gene of Aspergillus nidulans in order to identify residues involved in co-enzyme specificity. The niaD3000 mutation (NiaD T813D, K814Q) altered co-enzyme specificity: the new enzyme had high levels of NADH:NaR activity in vitro, whilst all NADPH-associated activity was lost. However, strains carrying this mutation did not grow on nitrate. Enzyme assays suggested that this was not due to inhibition of the mutant enzyme by NADPH. All revertants of the niaD3000 mutants had restored NADPH activity and lost NADH activity. Sequence analysis of these revertants showed that they all contained a single amino acid change at Asp-813, suggesting that this position is crucial to co-enzyme specificity. Further studies have shown that the mutant enzyme was not protected from deactivation by either co-factor in cell-free extracts (unlike the wild-type), and that induction of the glucose-6-phosphate dehydrogenase occurred independently of NADPH levels. These data highlight the importance of functional tests in vivo under physiological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/00221287-146-6-1399 | DOI Listing |
Nutrients
July 2024
Department of Education and Training, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Miyagi, Japan.
mBio
April 2024
Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France.
Apicomplexa parasites cause major diseases such as toxoplasmosis and malaria that have major health and economic burdens. These unicellular pathogens are obligate intracellular parasites that heavily depend on lipid metabolism for the survival within their hosts. Their lipid synthesis relies on an essential combination of fatty acids (FAs) obtained from both synthesis and scavenging from the host.
View Article and Find Full Text PDFFront Immunol
September 2023
Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.
Rapid detection of microbial-induced cellular changes during the course of an infection is critical to understanding pathogenesis and immunological homeostasis. In the last two decades, fluorescence imaging has received significant attention for its ability to help characterize microbial induced cellular and tissue changes in and settings. However, most of these methods rely on the covalent conjugation of large exogenous probes and detection methods based on intensity-based imaging.
View Article and Find Full Text PDFChemistry
August 2023
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
Lysocin E (1 a) and WAP-8294A2 (2 a) are peptidic natural products with 37- and 40-membered macrocycles, respectively. Compounds 1 a and 2 a have potent antibacterial activities against Gram-positive bacteria and share a unique mode of action. The electron-rich indole ring of d-Trp-10 of 1 a and 2 a interacts with the electron-deficient benzoquinone ring of menaquinone, which is a co-enzyme in the bacterial respiratory chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!