The equilibrium unfolding process of human Cu,Zn superoxide dismutase has been quantitatively monitored through circular dichroism and fluorescence spectroscopy as a function of increasing guanidinium hydrochloride concentration. The process occurs through the formation of a monomeric intermediate species following a three-state transition equilibrium. Comparison with the stability of the prokaryotic Cu,Zn SOD from P. leiognathi shows that the eukaryotic enzyme is more stable than the prokaryotic enzyme by approximately 3 kcal/mol. This difference is due to the monomer-to-unfolded equilibrium, while the dimer-to-monomer equilibrium is comparable for the two enzymes despite their different intersubunit interactions. These results are confirmed by the unfolding of the copper-depleted derivatives. The Cu,Zn superoxide dismutase represents a good example of how evolution has found two independent quaternary assemblies maintaining the same dimer stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/abbi.2000.1780 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!