Rationale And Objectives: The purpose of this study was to optimize selection of the mammographic features most useful in discriminating benign from malignant clustered microcalcifications.
Materials And Methods: The computer-aided diagnosis (CAD) system automatically extracted from digitized mammograms 13 quantitative features characterizing microcalcification clusters. Archival cases (n = 134; patient age range, 31-77 years; mean age, 56.8 years) with known histopathologic results (79 malignant, 55 benign) were selected. Three radiologists at three facilities independently analyzed the microcalcifications by using the CAD system. Stepwise discriminant analysis selected the features best discriminating benign from malignant microcalcifications. A classification scheme was constructed on the basis of these optimized features, and its performance was evaluated by using receiver operating characteristic (ROC) analysis.
Results: Six of the 13 variables extracted by the CAD system were selected by stepwise determinant analysis for generating the classification scheme, which yielded an ROC curve with an area (Az) of 0.98, specificity of 83.64%, positive predictive value of 89.53%, and accuracy of 91.79% for 98% sensitivity. When patient age was an additional variable, the scheme's performance improved, but this was not statistically significant (Az = 0.98). The ROC curve of the classifier (without age as an additional variable) yielded a high Az of 0.96 for patients younger than 50 years and an even higher (P < .02) Az of 0.99 for those 50 years or older.
Conclusion: Stepwise discriminant analysis optimized performance of a classification scheme for microcalcifications by selecting six optimized features. Scheme performance was significantly (P < .02) higher for women 50 years or older, but the addition of patient age as a variable did not produce a statistically significant increase in performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1076-6332(00)80380-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!