The isolation of a new fullerene dimer, C(122)H(4), and its structural characterization by (13)C NMR and (1)H NMR spectroscopy and by UV/vis and IR spectroscopy are reported. The structure of this dimer consists of two fullerene cages, which are directly connected through two C-C bonds and two methylene bridges. Consequently, adjacent hexagonal faces of the two fullerene cages are arranged in a face to face manner. Molecular orbital calculations indicate that the proximity of the fullerene cages results in significant through space overlap in both the HOMO and LUMO. As a consequence of this overlap, the electrochemistry of the dimer shows electronic communication with stepwise reduction of each cage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo991676j | DOI Listing |
Chemistry
January 2025
Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova, Chemistry Department, RUSSIAN FEDERATION.
We provide important novel insights into skeletal transformations of fullerene by reporting new cases of cage shrinkage in the most abundant C60 fullerene via a C2 loss. High-temperature (400-500 oC) chlorination of IPR C60 with SbCl5 or SbCl5/SbCl3 mixtures predominantly gives non-IPR C60Cln compounds via Stone-Wales rearrangements, but the present study further reveals non-classical C58Cln chlorofullerenes as by-products. The new C58(NC1)Cl20 and C58(NC1)Cl24 chlorides have been isolated by air-free HPLC and structurally characterized by X-ray crystallography.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
A thorium-carbon double bond that corresponds to the sum of theoretical covalent double bond radii has long been sought after in the study of actinide-ligand multiple bonding as a synthetic target. However, the stabilization of this chemical bond remains a great challenge to date, in part because of a relatively poor energetic matching between 5f-/6d- orbitals of thorium and the 2s-/2p- frontier orbitals of carbon. Herein, we report the successful synthesis of a thorium-carbon double bond in a carbon-bridged actinide-transition metal cluster, i.
View Article and Find Full Text PDFJ Mol Model
December 2024
Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4M1, Canada.
Context: In this work, we have studied different properties of a series of fullerenes, from C to C by confining hydrogen molecule inside their cavity. The compression of the hydrogen molecule upon encapsulation is evidenced by its altered bond length, while a slight expansion of the fullerene cages due to H confinement is also noted. The chemical reactivity parameters of both the empty and H confined fullerenes are computed, alongside an examination of the energy components through energy decomposition analysis.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
Chem Commun (Camb)
December 2024
MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
Endohedral metallofullerenes (EMFs) are constructed by fullerene cages encapsulating various metal atoms or metal clusters, which usually exhibit some motion. However, due to the fact that the elusive endohedral dynamics are related to many factors, it remains a challenge to image the motion of internal species. Recently, the electron spin was found to be a sensitive probe to detect the motion of internal species in EMFs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!