Free radicals and hearing. Cause, consequence, and criteria.

Ann N Y Acad Sci

International Antioxidant Research Centre, University of London King's College, UK.

Published: November 1999

Reactive oxygen and nitrogen species, including free radicals, are produced in the human body in both health and disease. In health, they may arise as regulatory mechanisms, intercellular signaling species, or as bacteriocidal agents. Their production is normally controlled by the antioxidant defense mechanisms that include intracellular enzymes--for example, glutathione peroxidase and superoxide dismutase--and low molecular-mass compounds such as vitamin E or ascorbic acid. Although repair mechanisms exist, some steady-state basal oxidative damage occurs in all individuals. Oxidative stress arises when there is a marked imbalance between the production and removal of reactive oxygen and nitrogen species. This may originate from an overproduction of these substances or from a depletion in the antioxidant defenses. Certain drugs may induce oxidative stress by forming drug-derived radicals that can not only deplete the antioxidant defenses but can also react directly with biomolecules. To be able to assess whether oxidative stress is occurring in a particular tissue, reliable biomarkers of oxidative damage are required. Since oxidative stress can damage all major biomolecules in vitro and probably in vivo, biomarkers for DNA, protein, and lipid damage are being developed which, when taken with an assessment of the antioxidant status of the individual, will allow evaluation of the involvement of oxidative stress in the etiology of disease and in the side effects of drugs. There is some evidence to suggest that free radical-mediated damage may be involved in the ototoxicity of aminoglycosides and cisplatin derivatives. Whether this is a cause or consequence of the toxic insult to the sensory hair cells of the inner ear remains to be determined.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.1999.tb08633.xDOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
free radicals
8
reactive oxygen
8
oxygen nitrogen
8
nitrogen species
8
oxidative damage
8
antioxidant defenses
8
oxidative
7
damage
5
stress
5

Similar Publications

Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation.

Appl Microbiol Biotechnol

December 2024

Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.

Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.

View Article and Find Full Text PDF

Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases.

View Article and Find Full Text PDF

Silencing miR-126-5p protects trabecular meshwork cells against chronic oxidative injury by upregulating HSPB8 to activate PI3K/AKT pathway.

J Mol Histol

December 2024

Department of Ophthalmology, First Affilliated Hospital, Heilongjiang University of Chinese Medicine, No.26 Heping Road, Xiangfang District, Harbin, 150000, China.

Chronic oxidative stress (COS) is related to the pathophysiology of the trabecular meshwork (TM) in glaucoma. MicroRNAs (miRNAs) have a key role in the oxidative stress-mediated glaucoma. This work investigated the function of miR-126-5p in human trabecular meshwork cells (TMCs) under chronic oxidative stress (COS).

View Article and Find Full Text PDF

Molecular mechanisms behind the inhibitory effects of ginsenoside Rg3 on hepatic fibrosis: a review.

Arch Toxicol

December 2024

College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.

Hepatitis is a chronic inflammatory liver disease and an important cause of liver fibrosis, which can progress to cirrhosis and even hepatocellular carcinoma if left untreated. However, liver fibrosis is a reversible disease, so finding new intervention targets and molecular markers is the key to preventing and treating liver fibrosis. Ginseng, the roots of Panax ginseng C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!