A neuron in vivo receives a continuous bombardment of synaptic inputs that modify the integrative properties of dendritic arborizations by changing the specific membrane resistance (R(m)). To address the mechanisms by which the synaptic background activity transforms the charge transfer effectiveness (T(x)) of a dendritic arborization, the authors simulated a neuron at rest and a highly excited neuron. After in vivo identification of the motoneurons recorded and stained intracellularly, the motoneuron arborizations were reconstructed at high spatial resolution. The neuronal model was constrained by the geometric data describing the numerized arborization. The electrotonic structure and T(x) were computed under different R(m) values to mimic a highly excited neuron (1 kOhm x cm(2)) and a neuron at rest (100 kOhm x cm(2)). The authors found that the shape and the size of the effective dendritic fields varied in the function of R(m). In the highly excited neuron, the effective dendritic field was reduced spatially by switching off most of the distal dendritic branches, which were disconnected functionally from the somata. At rest, the entire dendritic field was highly efficient in transferring current to the somata, but there was a lack of spatial discrimination. Because the large motoneurons are more sensitive to variations in the upper range of R(m), they switch off their distal dendrites before the small motoneurons. Thus, the same anatomic structure that shrinks or expands according to the background synaptic activity can select the types of its synaptic inputs. The results of this study demonstrate that these reconfigurations of the effective dendritic field of the motoneurons are activity-dependent and geometry-dependent.
Download full-text PDF |
Source |
---|
Oncoimmunology
December 2025
Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
In an immunocompetent mouse model of multifocal, metachronous HR mammary carcinogenesis, we have recently demonstrated that a superior control of primary neoplastic lesions by focal radiotherapy does not necessarily translate into improved oncosuppression at non-irradiated (pre)malignant tissues. These data point to a link between local tumor control by radiotherapy and systemic oncogenesis that remains to be fully understood.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
Lithium metal batteries are considered the holy grail for next-generation high-energy systems. However, lithium anode faces poor reversibility, unsatisfying cyclability and rate capability due to its uncontrollable plating/stripping behavior. While galvanostatic conditions are extensively studied, the behavior under more realistic application scenarios with variable inputs are less explored.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Dentistry, Yeungnam University College of Medicine, Daegu, Republic of Korea.
Background/purpose: Membrane-free stem cell components (MFSCCs) have been developed by removing cell membranes with antigens to overcome the limitations associated with cell-based therapies and isolate effective peptides. MFSCCs have been reported to have effects on oral infection sites. Chronic inflammatory diseases cause excessive bone resorption.
View Article and Find Full Text PDFFront Immunol
January 2025
Dermatology Hospital, Southern Medical University, Guangzhou, China.
Background: Fibrotic skin disease represents a major global healthcare burden, characterized by fibroblast hyperproliferation and excessive accumulation of extracellular matrix components. The immune cells are postulated to exert a pivotal role in the development of fibrotic skin disease. Single-cell RNA sequencing has been used to explore the composition and functionality of immune cells present in fibrotic skin diseases.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
Introduction: Hyperthermia is an established adjunct in multimodal cancer treatments, with mechanisms including cell death, immune modulation, and vascular changes. Traditional hyperthermia applications are resource-intensive and often associated with patient morbidity, limiting their clinical accessibility. Gold nanorods (GNRs) offer a precise, minimally invasive alternative by leveraging near-infrared (NIR) light to deliver targeted hyperthermia therapy (THT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!