Phosphorylation state of HPr determines the level of expression and the extent of phosphorylation of the lactose transport protein of Streptococcus thermophilus.

J Biol Chem

Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.

Published: November 2000

The lactose transport protein (LacS) of Streptococcus thermophilus is composed of a translocator domain and a regulatory domain that is phosphorylated by HPr(His approximately P), the general energy coupling protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). Lactose transport is affected by the phosphorylation state of HPr through changes in the activity of the LacS protein as well as expression of the lacS gene. To address whether or not CcpA-HPr(Ser-P)-mediated catabolite control is involved, the levels of LacS were determined under conditions in which the cellular phosphorylation state of HPr greatly differed. It appears that HPr(Ser-P) is mainly present in the exponential phase of growth, whereas HPr(His approximately P) dominates in the stationary phase. The transition from HPr(Ser-P) to HPr(His approximately P) parallels an increase in LacS level, a drop in lactose and an increase in galactose concentration in the growth medium. Because the K(m)(out) for lactose is higher than that for galactose, the lactose transport capacity decreases as lactose concentration decreases and galactose accumulates in the medium. Our data indicate that S. thermophilus compensates for the diminished transport capacity by synthesizing more LacS and phosphorylating the protein, which results in increased transport activity. The link between transport capacity and lacS expression levels and LacS phosphorylation are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M003512200DOI Listing

Publication Analysis

Top Keywords

lactose transport
16
phosphorylation state
12
state hpr
12
transport capacity
12
transport protein
8
streptococcus thermophilus
8
lacs
8
levels lacs
8
lactose
7
transport
7

Similar Publications

2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharides (HMOs). 2'-FL exhibits great benefits for infant health, such as preventing infantile diarrhea and promoting the growth of intestinal probiotics. The microbial cell factory technique has shown promise for the massive production of 2'-FL.

View Article and Find Full Text PDF

Probing Ligand-Induced Conformational Changes in an MFS Transporter in vivo Using Site-Directed PEGylation.

J Mol Biol

January 2025

Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA. Electronic address:

So far, site-directed alkylation (SDA) studies on transporters in the Major Facilitator Superfamily (MFS) are mostly performed at conditions different from the native cellular environment. In this study, using GFP-based site-directed PEGylation, ligand-induced conformational changes in the lactose permease of Escherichia coli (LacY), were examined in vivo for the first time. Accessibility/reactivity of single-Cys replacements in a Cys-less LacY-eGFP fusion background was tested using methoxy polyethylene glycol-maleimide-5K (mPEG-Mal-5K) in the absence or presence of a ligand, and the band-shift of the fusion upon PEGylation was detected by in-gel fluorescence.

View Article and Find Full Text PDF

Hypercalcemia and co-occurring TBX1 mutation in Glycogen Storage Disease Type Ib: case report.

BMC Med Genomics

January 2025

Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco.

Glycogen Storage Disease Type Ib (GSD-Ib) is a rare autosomal recessive metabolic disorder caused by mutations in SLC37A4, leading to a deficiency in glucose-6-phosphate translocase. This disorder is characterized by impaired glycogenolysis and gluconeogenesis, resulting in clinical and metabolic manifestations. We report a three-month-old Moroccan female patient presenting with doll-like facies, hepatomegaly, dysmorphic features, and developmental delays.

View Article and Find Full Text PDF

Utilising terahertz pulsed imaging to analyse the anhydrous-to-hydrate transformation of excipients during immediate release film coating hydration.

Int J Pharm

December 2024

Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK. Electronic address:

Pharmaceutical tablets are routinely film-coated to improve appearance, reduce medication errors and enhance storage stability. Terahertz pulsed imaging (TPI) can be utilised to study the liquid penetration into the porous tablet matrix in real time. Using polymer-coated flat-faced tablets with anhydrous lactose or mannitol, we show that when the tablet matrix contains anhydrous material, the anhydrous form transforms to the solid-state hydrate form in the tablet core while the immediate release coating dissolves.

View Article and Find Full Text PDF

Sugarcane smut caused by is a global sugarcane disease, and studying its molecular pathogenesis is crucial for discovering new prevention and control targets. This study was based on the transcriptome sequencing data of two isolates with different pathogenicities ( and ) of the and screened out a gene encoding the Major Facility Superfamily (MFS) sugar transporter protein and named it . Knockout mutants ( and ) and complementary mutants ( and ) were obtained through polyethylene glycol (PEG)-mediated protoplast transformation technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!