Review of microbial infections and the immune response to cardiac antigens.

J Infect Dis

Amgen Institute, Ontario Cancer Institute, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada.

Published: June 2000

Heart disease is the most prevalent cause of morbidity and mortality in rich countries. Multiple pathogens are epidemiologically linked to human heart disease, and autoinflammatory responses to heart-specific epitopes revealed to the host's immune system (e.g., due to the cytopathic effects of cardiotropic viruses) or attacked by autoaggresive lymphocytes activated by mimicking peptides present in bacteria may be causative in the pathogenesis of chronic inflammatory cardiomyopathy. The experimental system of murine chronic autoimmune myocarditis has been used to analyze aspects of the host immune response. This review presents insights gained by use of this murine model system into molecular mechanisms governing activation of autoaggressive lymphocytes, target organ susceptibility, and cardiopathogenic epitope mapping and discusses mimicking endogenous epitopes found in pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1086/315613DOI Listing

Publication Analysis

Top Keywords

immune response
8
heart disease
8
review microbial
4
microbial infections
4
infections immune
4
response cardiac
4
cardiac antigens
4
antigens heart
4
disease prevalent
4
prevalent morbidity
4

Similar Publications

Objective: Evaluate the effect of white noise intervention on sleep quality and immunological indicators of patients with breast cancer undergoing neoadjuvant chemotherapy (NAC).

Methods: From January 2020 to December 2022, 104 newly diagnosed female patients (the number of people who met the inclusion criteria) with breast cancer who were confirmed to be preoperative NAC by puncture pathology were selected for a randomised single-blind trial. The patients were randomly divided into an observation group and a control group, with 52 cases in each group.

View Article and Find Full Text PDF

Neuroimmunometabolism describes how neuroimmune cells, such as microglia, adapt their intracellular metabolic pathways to alter their immune functions in the CNS. Emerging evidence indicates that neurons also orchestrate the microglia mediated immune response through neuro-immune crosstalk perhaps through metabolic signalling. However, little is known about how the brain's metabolic microenvironment and microglial intracellular metabolism orchestrate the neuroimmune response in healthy and diseased brains.

View Article and Find Full Text PDF

The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.

View Article and Find Full Text PDF

T cell-based therapies, including Tumor Infiltrating Lymphocyte Therapy (TIL), T cell receptor engineered T cells (TCR T), and Chimeric Antigen Receptor T cells (CAR T), are powerful therapeutic approaches for cancer treatment. While these therapies are primarily known for their direct cytotoxic effects on cancer cells, accumulating evidence indicates that they also influence the tumor microenvironment (TME), by altering the cytokine milieu and recruiting additional effector populations to help orchestrate the antitumor immune response. Conversely, the TME itself can modulate the behaviour of these therapies within the host by either supporting or inhibiting their activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!