Recent studies have indicated that the superior colliculus (SC), traditionally considered to be saccade-related, may play a role in the coding of eye movements in both direction and depth. Similarly, it has been suggested that omnidirectional pause neurons are not only involved in the initiation of saccades, but can also modulate vergence eye movements. These new developments provide a challenge for current oculomotor models that attempt to describe saccade-vergence coordination and the neural mechanisms that may be involved. In this paper, we have attempted to study these aspects further by investigating the role of the rostral pole of the SC in the control of vergence eye movements. It is well-known that, by applying long-duration electrical stimulation to rostral sites in the monkey SC, saccadic responses can be prevented and interrupted. We have made use of these properties to extend this paradigm to eye movements that contain a substantial depth component. We found that electrical intervention in the rostral region also has a clear effect on vergence. For an eye movement to a near target, stimulation leads to a significant suppression and change in dynamics of the pure vergence response during the period of stimulation, but the depth component cannot be prevented entirely. When these paradigms are implemented for 3D refixations, the saccade is inactivated, as expected, while the vergence component is often suppressed more than in the case of the pure vergence. The data lead us to conclude that the rostral SC, presumably indirectly via connections with the pause neurons, can affect vergence control for both pure vergence and combined 3D responses. Suppression of the depth component is incomplete, in contrast to the directional movement, and is often different in magnitude for 3D refixations and pure vergence responses. The results are discussed in connection with current models for saccade-vergence interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s002219900221 | DOI Listing |
iScience
January 2025
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14399-57131, Iran.
Microsaccades, a form of fixational eye movements, help maintain visual stability during stationary observations. This study examines the modulation of microsaccadic rates by various stimulus categories in monkeys and humans during a passive viewing task. Stimulus sets were grouped into four primary categories: human, animal, natural, and man-made.
View Article and Find Full Text PDFGMS Ophthalmol Cases
December 2024
Department of Neuro-Ophthalmology, Aravind Eye Hospital and Postgraduate Institute, Coimbatore, India.
We present a case of a young woman who presented with blurring of vision in her right eye, worsening on near work. Detailed ophthalmic and neurological evaluation was done, which revealed light near dissociation, vermiform iris movements, constriction to diluted pilocarpine with absent deep tendon reflexes. Laboratory investigation indicated mild iron deficiency anemia and reduced vitamin D3 level.
View Article and Find Full Text PDFJ Transl Med
January 2025
School of Information and Communication Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, China.
Background: Parkinson's Disease (PD) is a neurodegenerative disorder, and eye movement abnormalities are a significant symptom of its diagnosis. In this paper, we developed a multi-task driven by eye movement in a virtual reality (VR) environment to elicit PD-specific eye movement abnormalities. The abnormal features were subsequently modeled by using the proposed deep learning algorithm to achieve an auxiliary diagnosis of PD.
View Article and Find Full Text PDFKlin Monbl Augenheilkd
January 2025
Visual deficits/ametropia are particularly significant obstacles in sports because the visual system controls/corrects all of an athlete's movements. However, athletes are at increased risk for eye injuries caused by high-velocity objects e.g.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
To maintain stable vision, behaving animals make compensatory eye movements in response to image slip, a reflex known as the optokinetic response (OKR). Although OKR has been studied in several avian species, eye movements during flight are expected to be minimal. This is because vertebrates with laterally placed eyes typically show weak OKR to nasal-to-temporal motion (NT), which simulates typical forward locomotion, compared with temporal-to-nasal motion (TN), which simulates atypical backward locomotion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!