The fine structure of the epithelial cells of the parabronchus and their secretory products have been the subject of many studies and have given rise to considerable controversy about their configuration and ultrastructure. The aim of the present study was to investigate the mode of formation and discharge of lamellar bodies of granular cells and the trilaminar substance produced and discharged by the embryologically related squamous atrial and respiratory epithelial cells. The material for light and transmission electron microscopic analysis was collected from 10 mature quail and 3 individuals aged 2 days. The parabronchial atria harbour two ultrastructurally distinct types of epithelial cells. The granular cells (analogous to type II cells of the mammalian pulmonary alveolus) produce and discharge balls of lamellar bodies. The squamous atrial cells produce and discharge sheets of trilaminar substance sandwiched between long tentacle-like processes, viz. the microvilli. The infundibula and air capillaries of the gas exchange tissue are invested with squamous respiratory cells which extend very thin, long processes that cover the air capillaries and constitute, together with the blood capillaries, the blood-air barrier. The squamous respiratory cells produce and discharge trilaminar substance as an extracellularly located acellular lining layer which is found in close contact with their cell membrane. Both squamous atrial and respiratory cells hence synthetize and discharge trilaminar substance, the basic unit of which has the ultrastructural appearance of a 7.5 to 8.0 nm membrane unit. The formation of trilaminar substance originates in the agranular endoplasmic reticulum, while the origin of the lamellar bodies of granular cells is related to the granular endoplasmic reticulum, the Golgi complex and the multivesicular bodies. Their structural unit is composed of a 4.5 to 5.0 nm thread-like structure which is concentrically arranged around a spherical core of granular substance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0940-9602(00)80024-2DOI Listing

Publication Analysis

Top Keywords

trilaminar substance
24
epithelial cells
12
lamellar bodies
12
granular cells
12
squamous atrial
12
produce discharge
12
respiratory cells
12
cells
11
bodies granular
8
atrial respiratory
8

Similar Publications

The greater part of the striatum is composed of striosomes and matrix compartments, but we recently demonstrated the presence of a region that has a distinct structural organization in the ventral half of the mouse caudal striatum (Miyamoto et al. in Brain Struct Funct 223:4275-4291, 2018). This region, termed the tri-laminar part based upon its differential immunoreactivities for substance P and enkephalin, consists of medial, intermediate, and lateral divisions.

View Article and Find Full Text PDF

The striatum is critically involved in execution of appropriate behaviors, but its internal structures remain unmapped due to its unique structural organization, leading to ambiguity when interpreting heterogeneous properties of striatal neurons that differ by location. We focused on site-specific diversity of striosomes/matrix compartmentalization to draw the striatum map. Five types of striosomes were discriminated according to diverse immunoreactivities for the µ-opioid receptor, substance P (SP) and enkephalin, and each type occupied a particular domain inside the striatum.

View Article and Find Full Text PDF

OBJECTIVE To characterize the MRI and histologic features of the supraspinatus tendon in nonlame dogs. ANIMALS 7 cadavers (14 shoulder joints) of nonlame 2-year-old sexually intact male Beagles. PROCEDURES Multiple MRI fluid-sensitive pulse sequences were obtained for both shoulder joints of each cadaver, and the thickness, volume, and signal intensity of each supraspinatus tendon were assessed.

View Article and Find Full Text PDF

Dual secretion locations on type II cells in the avian lung suggest local as well as general roles of surfactant.

J Morphol

August 2016

Department of Anatomy, Histology and Embriology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 58, Budapest, 1094, Hungary.

Transmission electron microscopy indicates that the avian lung surfactant may be secreted in two directions: a) into air passages of parabronchus, atrium and infundibulum where it forms a trilaminar substance serving the respiratory role and b) to the basolateral surface-intercellular space-of type II pneumocytes, contributing to the innate and adoptive immune responses of lung. Basolateral secretion may be confirmed by the presence of trilaminal substance in the intercellular space of type II pneumocytes. Fusion of surfactant containing vesicles with the lateral plasma membrane may result in membrane fusion of neighboring cells and subsequently formation of multinucleated giant cell.

View Article and Find Full Text PDF

This study focused on the attachment strategy, cell structure and the host-parasite interactions of the protococcidian Eleutheroschizon duboscqi, parasitising the polychaete Scoloplos armiger. The attached trophozoites and gamonts of E. duboscqi were detected at different development stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!