Different mutation frequencies and spectra among organs by N-methyl-N-nitrosourea in rpsL (strA) transgenic mice.

Jpn J Cancer Res

Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

Published: May 2000

The frequencies and spectra of N-methyl-N-nitrosourea (MNU)-induced in vivo somatic mutations were determined in rpsL (strA) transgenic mice. The wild-type rpsL gene, which exhibits a streptomycin-sensitive (Sm(S)) phenotype, was used as the rescue marker gene. Studies of mutation spectra among different organs and tissues were simplified using this system because of the short coding sequence (375 bp) of the rpsL gene. MNU administration to transgenic mice significantly elevated the mutation frequencies in various adult organs. Two distinctive patterns of mutation spectrum were observed, depending on the organs tested. Mutations derived from labile organs (spleen and thymus) were predominantly G:C to A:T transitions, as expected for MNU mutagenesis. Stable organs like the liver and brain, however, carried many fewer G:C to A:T transitions but significantly more single base deletions, of which the spectrum was very similar to that of background mutations in the rpsL transgenic mice. This spectrum difference among more and less proliferating organs was confirmed by the predominant occurrence of G:C to A:T transitions in fetal liver cells exposed to transplacental MNU treatment. In addition, most (approximately 90%) of the G:C to A:T transitions induced by MNU were detected in the first nucleotide of some 5'-G-(C or G)-3' sequences, many of which corresponded to the middle guanine residue of 5'-purine-G-(C or G)-3' sequences. It is thus suggested that at particular sites, the neighboring bases in both the 5' side and 3' side seem to influence either the susceptibility to DNA damage or the ability to repair MNU-induced lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5926380PMC
http://dx.doi.org/10.1111/j.1349-7006.2000.tb00971.xDOI Listing

Publication Analysis

Top Keywords

transgenic mice
16
mutation frequencies
8
frequencies spectra
8
spectra organs
8
rpsl stra
8
stra transgenic
8
rpsl gene
8
g-3' sequences
8
organs
7
rpsl
5

Similar Publications

Post-traumatic epilepsy (PTE) is one of the most common life-quality reducing consequences of traumatic brain injury (TBI). However, to date there are no pharmacological approaches to predict or to prevent the development of PTE. The P2X7 receptor (P2X7R) is a cationic ATP-dependent membrane channel that is expressed throughout the brain.

View Article and Find Full Text PDF

Background: The G protein-coupled receptor 55 (GPR55) is part of an expanded endocannabinoid system (ECS), and plays a pro-tumorigenic role in different cancer models, including pancreatic cancer. Next to cancer cells, various cells of the immune tumor microenvironment (TME) express receptors of the ECS that critically determine tumor growth. The role of GPR55 in cancer cells has been widely described, but its role in the immune TME is not well understood.

View Article and Find Full Text PDF

Alzheimer's disease, a devastating neurodegenerative disorder, is characterized by progressive cognitive decline, primarily due to amyloid-beta protein deposition and tau protein phosphorylation. Effectively reducing the cytotoxicity of amyloid-beta42 aggregates and tau oligomers may help slow the progression of Alzheimer's disease. Conventional drugs, such as donepezil, can only alleviate symptoms and are not able to prevent the underlying pathological processes or cognitive decline.

View Article and Find Full Text PDF

Tight junctions (TJs) between adjacent Sertoli cells are believed to form immunological barriers that protect spermatogenic cells expressing autoantigens from autoimmune responses. However, there is no direct evidence that Sertoli cell TJs (SCTJs) do indeed form immunological barriers. Here, we analyzed male mice lacking claudin-11 (Cldn11), which encodes a SCTJ component, and found autoantibodies against antigens of spermatocytes/spermatids in their sera.

View Article and Find Full Text PDF

Caerin 1.1/1.9-mediated antitumor immunity depends on IFNAR-Stat1 signalling of tumour infiltrating macrophage by autocrine IFNα and is enhanced by CD47 blockade.

Sci Rep

January 2025

Key Laboratory of Cancer Immunotherapy of Guangdong Tertiary Education, Guangdong CAR-T Treatment Related Adverse Reaction Key Laboratory, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China.

Previously, we demonstrated that natural host-defence peptide caerin 1.1/caerin 1.9 (F1/F3) increases the efficacy of anti-PD-1 and therapeutic vaccine, in a HPV16 + TC-1 tumour model, but the anti-tumor mechanism of F1/F3 is still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!