Objective: To study the effects of high-dose epinephrine, compared with standard-dose epinephrine, on the dynamics of superficial cortical cerebral blood flow as well as global cerebral oxygenation during experimental cardiopulmonary resuscitation. We hypothesized that high-dose epinephrine might be unable to improve cerebral blood flow during cardiopulmonary resuscitation as compared with standard-dose epinephrine.

Design: Randomized controlled study.

Setting: University hospital research laboratory.

Subjects: A total of 20 male anesthetized piglets.

Interventions: Ventricular fibrillation was induced. A nonintervention interval of 8 mins was followed by open-chest cardiopulmonary resuscitation. The animals were randomized to receive repeated bolus injections of either 20 microg/kg (standard-dose group, n = 10) or 200 microg/kg (high-dose group, n = 10) of epinephrine.

Measurements And Main Results: Focal cortical cerebral blood flow was measured continuously by using laser Doppler flowmetry. The duration of blood flow increase was significantly shorter in the high-dose group after the second dose of epinephrine. In the high-dose group there was also a consistent tendency for lower peak levels and shorter duration of flow increase in response to repeated bolus doses of epinephrine. Cerebral oxygen extraction ratio was significantly lower in the high-dose group after administration of epinephrine.

Conclusions: Repeated bolus doses of epinephrine 200 microg/kg, as compared with 20 microg/kg, do not improve superficial cortical cerebral blood flow during experimental open-chest cardiopulmonary resuscitation. High-dose epinephrine appears to induce vasoconstriction of cortical cerebral blood vessels resulting in redistribution of blood flow from superficial cortex. This might be one explanation for the failure of high-dose epinephrine to improve overall outcome in clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00003246-200005000-00028DOI Listing

Publication Analysis

Top Keywords

blood flow
28
cerebral blood
24
high-dose epinephrine
20
cardiopulmonary resuscitation
20
cortical cerebral
16
high-dose group
16
repeated bolus
12
high-dose
9
epinephrine
9
effects high-dose
8

Similar Publications

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Jejunal Artery Aneurysm Exclusion With Immediate Vascular Reconstruction: A Case Report.

Port J Card Thorac Vasc Surg

January 2025

Angiology and Vascular Surgery, Unidade Local de Saúde de São João; Surgery and Physiology, Faculdade de Medicina da Universidade do Porto, Portugal.

A 44 year-old previously healthy woman presented a persistent epigastric pain. Computed tomography revealed a saccular aneurysm with a diameter of 25x20 mm in the first jejunal artery and also a stenosis in the celiac trunk associated with median arcuate ligament syndrome, turning the hepatic perfusion dependent of the gastroduodenal artery flow. Through a midline laparotomy, celiac axis was exposed, and median arcuate ligament released for median arcuate ligament syndrome treatment.

View Article and Find Full Text PDF

Advances in Diagnosis, Treatment and Prognostic in Aortoiliac Occlusive Disease - A Narrative Review.

Port J Card Thorac Vasc Surg

January 2025

Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto; RISE@Health, Porto, Portugal.

Background: Aortoiliac disease (AID) is a variant of peripheral artery disease involving the infrarenal aorta and iliac arteries. Similar to other arterial diseases, aortoiliac disease obstructs blood flow through narrowed lumens or by embolization of plaques. AID, when symptomatic, may present with a triad of claudication, impotence, and absence of femoral pulses, a triad also referred as Leriche Syndrome (LS).

View Article and Find Full Text PDF

Introduction: Hemoperfusion (HP), a blood filtration method targeting the removal of toxins and inflammatory elements, was investigated in this study. The objective was to present the observations in four individuals with confirmed COVID-19 who underwent several rounds of HP utilizing the HA330 cartridge at a hospital in Indonesia.

Case Studies: We report four cases of COVID-19 patients who underwent HP.

View Article and Find Full Text PDF

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!