If we understand pathological processess within the alimentary tract, it is apparent that the fundamental aspects of microbe-host interactions need to be examined in greater detail. Pathogenic bacteria have evolved strategies to alter and subvert the function of T cels and phagocytes in the gut wall, and exploiting these molecules may lead to new treatments for chronic inflammatory bowel diseases. The adaptation of microbes to their host must involve microbe-mediated interference of the host innate immune response. The recent demonstration that nonpathogenic E. coli have a beneficial effect in ulcerative colitis further supports the notion that normal flora may alter the expression of the innate immune receptors or recognize alternative receptors compared with pathogenic variants. Such differences may conceivably lead to beneficial and protective alterations to the host through cytokine and antimicrobial peptide expression. Perhaps the contact point between microbes and host cells lies with the pattern-recognition receptors such as TLRs. However, although much light has been shed on the downstream consequences of TLR activation, many more questions remain unsolved. For example, little is known about the expression profiles of the different TLRs throughout the gastrointestinal tract. Additionally, ambiguities remain over the natural ligands for TLRs. The discovery that the Drosophila Toll receptor acts downstream of the pathogen recognition event suggests that there are many more twists and turns to be revealed in the story of host-microbe interactions in the gastrointestinal tract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00054725-200005000-00008 | DOI Listing |
Ann Nutr Metab
January 2025
Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy.
Background: Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest.
Summary: Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis.
Appl Microbiol Biotechnol
January 2025
Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.
Metagenomes present a source for novel enzymes, but under 1% of environmental microbes are cultivatable. Because of its useful properties, Escherichia coli has been used as a host organism in functional genomic screens. However, due to differing expression machineries in the expression host compared to the source organism of the DNA sequences, screening outcomes can be biased.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
Animal skin acts as the barrier against invasion by pathogens and microbial colonizers. Environmental microbiota plays a significant role in shaping these microbial communities, which, in turn, have profound implications for host health. Previous research has focused on characterizing microorganisms on bats' skin and in their roosting environments, particularly bacterial communities.
View Article and Find Full Text PDFInfect Immun
January 2025
Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
is an opportunistic human pathogen that acquires nutrient metals from the vertebrate host amid infection. During zinc (Zn) scarcity, upregulates the expression of the predicted Zn metallochaperone, . Loss of compromises fitness during Zn deficiency, highlighting its role in this condition.
View Article and Find Full Text PDFFood Chem X
January 2025
Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
This study used integrative omics to address the response of key elements of the grapevine holobiont to contrasted pedoclimatic conditions found in distinct subregions of Douro Valley (Portugal). A metabolic OPLS-DA model predicted with 100 % accuracy the geographic origin of berries; higher UV radiation, higher temperature and lower precipitation stimulated the accumulation of phenolic acids, flavonols and malvidin conjugates, in detriment of amino acids, organic acids, flavan-3-ols, proanthocyanidins and non-malvidin anthocyanins. Metabarcoding showed a trade-off between bacteria and fungal diversity among subregions, with , and acting as intraregional microbial markers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!