Viral respiratory infections cause acute bronchiolitis and physiologic dysfunction in human infants and in animals. It is possible that the pulmonary dysfunction is a consequence of the inflammatory cells that are recruited during viral illness. We hypothesized that blockade of intercellular adhesion molecule-1 (ICAM-1), a major cell adhesion molecule, would impede the ingress of leukocytes during viral infection and attenuate virus-induced pulmonary dysfunction. Adult male rats were inoculated with parainfluenza type 1 (Sendai) virus or sterile vehicle, and treated with blocking or nonblocking MAb specific for rat ICAM-1. Respiratory system resistance, oxygenation (PaO2), methacholine responsiveness, and bronchoalveolar lavage (BAL) leukocyte counts were measured in anesthetized, paralyzed, ventilated rats. Treatment with the blocking ICAM-1 antibody reduced virus-induced increases in BAL neutrophils and lymphocytes by 70% (p < 0.001), but did not affect BAL monocytes/macrophages. Peripheral blood leukocyte counts were elevated in anti-ICAM-1 blocking antibody-treated rats (p = 0.0003). Although virus-induced increases in resistance and decreases in PaO2 were not affected by anti-ICAM-1 treatment, there was a small but significant attenuation of virus-induced methacholine hyperresponsiveness (p = 0.02). We conclude that ICAM-1 has an important role in neutrophil and lymphocyte infiltration during respiratory viral illness, and that virus-induced changes in pulmonary physiology are not related directly to the numbers of neutrophils and lymphocytes that migrate to the air spaces during infection.

Download full-text PDF

Source
http://dx.doi.org/10.1203/00006450-200006000-00023DOI Listing

Publication Analysis

Top Keywords

pulmonary dysfunction
8
viral illness
8
leukocyte counts
8
virus-induced increases
8
neutrophils lymphocytes
8
icam-1
5
viral
5
virus-induced
5
icam-1 blockade
4
blockade lung
4

Similar Publications

Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older adults, intensive care unit (ICU) patients, and those with compromised immune systems.

View Article and Find Full Text PDF

Background: The phase angle (PhA) in bioelectrical impedance analysis (BIA) reflects the cell membrane integrity or body fluid equilibrium. We examined how the PhA aligns with previously known markers of acute heart failure (HF) and assessed its value as a screening tool.

Methods: PhA was measured in 50 patients with HF and 20 non-HF controls along with the edema index (EI), another BIA parameter suggestive of edema.

View Article and Find Full Text PDF

Purpose: Patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) have been noted to face increased cancer incidence. Yet, the impact of concomitant renal dysfunction on acute outcomes following elective surgery for cancer remains to be elucidated.

Methods: All adult hospitalizations entailing elective resection for lung, esophageal, gastric, pancreatic, hepatic, or colon cancer were identified in the 2016-2020 National Inpatient Sample.

View Article and Find Full Text PDF

Background: The efficacy and safety of ensifentrine, a novel PDE3/PDE4 inhibitor, were previously evaluated in the ENHANCE-1 (NCT04535986) and ENHANCE-2 (NCT04542057) trials. Here, we present a pooled post-hoc subgroup analysis of patients according to background chronic obstructive pulmonary disease (COPD) maintenance medication regimens.

Objective: This analysis aimed to explore the efficacy and safety of ensifentrine in patients receiving long-acting muscarinic antagonists (LAMA) or long-acting beta-agonists with inhaled corticosteroids (LABA + ICS).

View Article and Find Full Text PDF

Transplanted organs are inevitably exposed to ischemia-reperfusion (IR) injury, which is known to cause graft dysfunction. Functional and structural changes that follow IR tissue injury are mediated by neutrophils through the production of oxygen-derived free radicals, as well as from degranulation which entails the release of proteases and other pro-inflammatory mediators. Neutrophil serine proteases (NSPs) are believed to be the principal triggers of post-ischemic reperfusion damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!