Recent experimental and clinical studies have demonstrated that several pulsed laser systems are also suitable for stapedotomy. The aim of the study was to investigate morphological and functional inner ear changes after irradiating the basal turn of the guinea pig cochlea with two pulsed laser systems of different wavelengths. The Er:YSGG (lambda=2.78 mcm) and Ho:YAG (lambda=2.1 mcm) lasers were used applying the laser energies necessary for perforating a human stapes footplate. The cochleas were removed 90 min, 1 day, 2 weeks, or 4 weeks after laser application. Acoustic evoked potentials (compound action potentials) were measured before and after laser application and at the above times immediately before removal of the cochleas. The organ of Corti was examined by scanning electron microscopy. Application of Er:YSGG laser parameters effective for stapedotomy had no adverse effects on Corti's organ in the guinea pig cochlea. On the other hand, effective Ho:YAG laser parameters cause damage to the outer hair cells with fusion of stereocilia and formation of giant cilia leading to partial or total cell loss. The inner hair cells and supporting cells were usually normal. These morphological data show a good correlation with the electrophysiological measurements. Our results clearly demonstrate that, besides achieving efficient bone management, the Er:YSGG laser has high application safety. On the other hand, the Ho:YAG laser is not well tolerated in our animal study. Its use in stapedotomy would be unreliable and dangerous for the inner ear.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-5955(00)00058-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!