Modeling of propagation and echo formation in a multilayered structure.

Ultrasonics

Commissariat a l'Energie Atomique, CEREM, CEA-Saclay, Gif-sur-Yvette, France.

Published: March 2000

In the aim of simulating the ultrasonic inspection of multilayered structure, we propose a hybrid model, based on transfer matrices and ray tracing formalisms. This approach allows one to predict the response of structures containing defects of finite size such as delaminations or adhesion defect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0041-624x(99)00066-9DOI Listing

Publication Analysis

Top Keywords

multilayered structure
8
modeling propagation
4
propagation echo
4
echo formation
4
formation multilayered
4
structure aim
4
aim simulating
4
simulating ultrasonic
4
ultrasonic inspection
4
inspection multilayered
4

Similar Publications

Purpose: Present blood-contacting materials have not yet demonstrated to be effective in reducing blood coagulation without causing additional side effects clinically. We have developed an endothelial glycocalyx-inspired biomimetic surface that combines nanotopography, heparin presentation, and nitric oxide (NO)-releasing features. The resulting modified surfaces have already shown promise in reducing unfavorable blood-material interactions using platelet-rich plasma.

View Article and Find Full Text PDF

Advancing diagnostics and disease modeling: current concepts in biofabrication of soft microfluidic systems.

In Vitro Model

June 2024

3B's Research Group, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, Zona Industrial da Gandra - Avepark, Barco, Guimaraes, 4805-017 Portugal.

Soft microfluidic systems play a pivotal role in personalized medicine, particularly in in vitro diagnostics tools and disease modeling. These systems offer unprecedented precision and versatility, enabling the creation of intricate three-dimensional (3D) tissue models that can closely emulate both physiological and pathophysiological conditions. By leveraging innovative biomaterials and bioinks, soft microfluidic systems can circumvent the current limitations involving the use of polydimethylsiloxane (PDMS), thus facilitating the development of customizable systems capable of sustaining the functions of encapsulated cells and mimicking complex biological microenvironments.

View Article and Find Full Text PDF

Background: Sudden sensorineural hearing loss (SSNHL) is associated with abnormal changes in the brain's central nervous system. Previous studies on the brain networks of SSNHL have primarily focused on functional connectivity within the brain. However, in addition to functional connectivity, structural connectivity also plays a crucial role in brain networks.

View Article and Find Full Text PDF

This study explores and discusses the design, the manufacturing and the morphology of three-dimensional (3D) multilayered weft interlaced woven fabrics using stainless steel fibers on the electromagnetic shielding efficiency (SE). Design solutions of 3D multilayered interlaced fabrics in relation to electromagnetic shielding efficiency are still not sufficiently investigated. Moreover, this study aims to analyze the differences in the internal geometry of 3D multilayered weft interlaced fabrics with different number of layers and frequency of connecting points in multilayered woven fabrics on electromagnetic SE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!