As part of an extensive safety evaluation programme, a series of studies has been conducted to determine the fate of phytosterols in the rat. Rats were dosed by oral gavage with 14C-labelled samples of cholesterol, beta-sitosterol or beta-sitostanol or (3)H-labelled samples of beta-sitostanol, campesterol, campestanol or stigmasterol dissolved in sunflower seed oil. Urine and faeces were collected for up to 96 hours after dosing. There was no quantification of biliary excreted material in these studies. Animals were sacrificed and either prepared for whole body autoradiography or tissues and carcass remains were assayed for 14C or (3)H. The overall absorption of phytosterols was low as judged by tissue and carcass levels of radioactivity. Elimination from the body was mainly in the faeces and was initially very rapid, but traces of material were still being excreted at 4 days after dosing. While total absorption of the phytosterols could not be fully quantified without biliary excretion data, it was clear that cholesterol was absorbed to the greatest extent (27% of the dose in females at 24 hours). Campesterol (13%) was absorbed more than beta-sitosterol and stigmasterol (both 4%) which were absorbed more than beta-sitostanol and campestanol (1-2%). The absorption of phytosterols was slightly greater in females than males. For each test material, the overall pattern of tissue distribution of radioactivity was similar, with the adrenal glands, ovaries and intestinal epithelia showing the highest levels and the longest retention of radioactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0278-6915(00)00021-1DOI Listing

Publication Analysis

Top Keywords

absorption phytosterols
12
safety evaluation
8
tissue distribution
8
phytosterols rat
8
phytosterols
5
evaluation phytosterol
4
phytosterol esters
4
esters comparative
4
absorption
4
comparative absorption
4

Similar Publications

Consumption of phytosterols is a nutritional strategy employed to reduce cholesterol absorption, but recent research shows that their biological activity might go beyond cholesterol reduction for the treatment of metabolic dysfunction-associated fatty liver disease (MAFLD), and novel phytosterol formulations, such as submicron dispersions, could improve these effects. We explored the therapeutic activity of phytosterols, either formulated as submicron dispersions of phytosterols (SDPs) or conventional phytosterol esters (PEs), in a mouse model of MAFLD. MAFLD was induced in mice by atherogenic diet (AD) feeding.

View Article and Find Full Text PDF

Nephrotic syndrome, a multifaceted medical condition characterized by significant proteinuria, has recently prompted a reorientation of research efforts toward B-cell-mediated mechanisms. This shift underscores the pivotal role played by B-cells in its pathogenesis. The aim of this study was to explore potential therapeutic pathways, with specific attention given to compounds found in , including withanolides, such as physalins, which constitute one of the five distinct withanolide subgroups identified in .

View Article and Find Full Text PDF

Traditional medicinal systems have extensively used Primula macrophylla (Primulaceae) to treat a variety conditions, including bronchitis, asthma, joint pain, fever and so forth. This study determines various pharmacognostic and phytochemical standards helpful to ensure the purity, safety, and efficacy of medicinal plant P. macrophylla.

View Article and Find Full Text PDF

β-Sitosterol is a major bioactive constituent and the most abundant phytosterol in nuts, seeds, and vegetable oils. It is structurally similar to cholesterol, except for the addition of the ethyl group. The primary benefit of β-sitosterol is that it lowers the body's absorption of low-density lipoprotein, or "bad" cholesterol.

View Article and Find Full Text PDF

Astaxanthin (Ax) determines the flesh redness of a salmonid fish which is the most desirable quality indicator by consumers. Fish cannot synthesize Ax de novo, therefore, the only way to increase flesh redness is to increase dietary input or improve the absorption and retention rate of dietary Ax. As a hydrophobic carotenoid, the absorption of Ax can be modulated by other lipid molecules in the diet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!